Distributed Event-Triggered Nonconvex Optimization under Polyak-Lojasiewicz Condition

被引:0
|
作者
Gao, Chao [1 ]
Xu, Lei [1 ]
Zhang, Kunpeng [1 ]
Li, Yuzhe [1 ]
Liu, Zhiwei [2 ]
Yang, Tao [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed nonconvex optimization; Dynamic event-triggered mechanism; Linear convergence; Polyak-Lojasiewicz condition; SYSTEMS;
D O I
10.1109/ICARCV63323.2024.10821649
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the distributed nonconvex optimization problem, where the goal is to minimize the average of local nonconvex cost functions through local information exchange. Firstly, we propose a distributed optimization algorithm that integrates the gradient tracking method with a dynamic event-triggered communication scheme, thereby reducing communication overhead. Secondly, we demonstrate that the algorithm linearly converges to the global optimum under the Polyak-Lojasiewicz condition, which indicates that every stationary point is a global minimizer. The numerical experiment is presented to validate the theoretical results and confirm the algorithm's effectiveness.
引用
收藏
页码:930 / 935
页数:6
相关论文
共 50 条
  • [1] Asynchronous Parallel Nonconvex Optimization Under the Polyak-Lojasiewicz Condition
    Yazdani, Kasra
    Hale, Matthew
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 524 - 529
  • [2] Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak-Lojasiewicz Condition
    Xu, Lei
    Yi, Xinlei
    Deng, Chao
    Shi, Yang
    Chai, Tianyou
    Yang, Tao
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (10) : 5746 - 5758
  • [3] A Generalized Alternating Method for Bilevel Optimization under the Polyak-Lojasiewicz Condition
    Rensselaer Polytechnic Institute, Troy
    NY, United States
    不详
    NY, United States
    arXiv, 1600,
  • [4] A Generalized Alternating Method for Bilevel Optimization under the Polyak-Lojasiewicz Condition
    Xiao, Quan
    Lu, Songtao
    Chen, Tianyi
    Advances in Neural Information Processing Systems, 2023, 36
  • [5] OVER-PARAMETERIZED MODEL OPTIMIZATION WITH POLYAK-LOJASIEWICZ CONDITION
    Chen, Yixuan
    Shi, Yubin
    Dong, Mingzhi
    Yang, Xiaochen
    Li, Dongsheng
    Wang, Yujiang
    Dick, Robert P.
    Lv, Qin
    Zhao, Yingying
    Yang, Fan
    Gu, Ning
    Shang, Li
    11th International Conference on Learning Representations, ICLR 2023, 2023,
  • [6] Dynamic Regret Bounds for Constrained Online Nonconvex Optimization Based on Polyak-Lojasiewicz Regions
    Mulvaney-Kemp, Julie
    Park, SangWoo
    Jin, Ming
    Lavaei, Javad
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (02): : 599 - 611
  • [7] Distributed Nonconvex Optimization With Event-Triggered Communication
    Xu, Lei
    Yi, Xinlei
    Shi, Yang
    Johansson, Karl H.
    Chai, Tianyou
    Yang, Tao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (04) : 2745 - 2752
  • [8] Faster Stochastic Algorithms for Minimax Optimization under Polyak-Lojasiewicz Conditions
    Chen, Lesi
    Yao, Boyuan
    Luo, Luo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [9] Faster Stochastic Algorithms for Minimax Optimization under Polyak-Lojasiewicz Conditions
    Chen, Lesi
    Yao, Boyuan
    Luo, Luo
    Advances in Neural Information Processing Systems, 2022, 35
  • [10] Fast Convergence of Random Reshuffling under Over-Parameterization and the Polyak-Lojasiewicz Condition
    Fan, Chen
    Thrampoulidis, Christos
    Schmidt, Mark
    arXiv, 2023,