Distributed Nonconvex Optimization With Event-Triggered Communication

被引:1
|
作者
Xu, Lei [1 ,2 ]
Yi, Xinlei [3 ]
Shi, Yang [2 ]
Johansson, Karl H. [4 ]
Chai, Tianyou [1 ]
Yang, Tao [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 2Y2, Canada
[3] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
[4] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, S-10044 Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
Distributed nonconvex algorithm; event-triggered communication; exponential convergence; Polyak-Lojasiewicz (P-L) condition; Zeno behavior; CONVEX-OPTIMIZATION; ALGORITHMS;
D O I
10.1109/TAC.2023.3339439
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers distributed nonconvex optimization for minimizing the sum of local cost functions by using local information exchange. In order to avoid continuous communication among agents and reduce communication overheads, we develop a distributed algorithm with a dynamic exponentially decaying event-triggered scheme. We show that the proposed algorithm is free of Zeno behavior (i.e., finite number of triggers in any finite time interval) by contradiction and asymptotically converges to a stationary point if the local cost functions are smooth. Moreover, we show that the proposed algorithm exponentially converges to the global optimal point if, in addition, the global cost function satisfies the Polyak-Lojasiewicz condition, which is weaker than the standard strong convexity condition, and the global minimizer is not necessarily unique. The theoretical results are illustrated by a numerical simulation example.
引用
收藏
页码:2745 / 2752
页数:8
相关论文
共 50 条
  • [1] Distributed Event-Triggered Stochastic Gradient-Tracking for Nonconvex Optimization
    Ishikawa, Daichi
    Hayashi, Naoki
    Takai, Shigemasa
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (05) : 762 - 769
  • [2] Event-triggered distributed nonconvex optimization with progress-based threshold
    Liu, Changxin
    Shi, Eric
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 309 - 314
  • [3] Dynamic event-triggered communication based distributed optimization
    Zhang, Zhiqiang
    Jan Lunze
    Sun, Yuangong
    Lu, Zehuan
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (17) : 8504 - 8522
  • [4] A class of distributed optimization methods with event-triggered communication
    Meinel, Martin
    Ulbrich, Michael
    Albrecht, Sebastian
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 57 (03) : 517 - 553
  • [5] A class of distributed optimization methods with event-triggered communication
    Martin Meinel
    Michael Ulbrich
    Sebastian Albrecht
    [J]. Computational Optimization and Applications, 2014, 57 : 517 - 553
  • [6] Distributed optimization for economic power dispatch with event-triggered communication
    Shi, Xiasheng
    Zheng, Ronghao
    Lin, Zhiyun
    Yan, Gangfeng
    [J]. ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2412 - 2421
  • [7] Distributed Nonconvex Event-Triggered Optimization Over Time-Varying Directed Networks
    Mao, Shuai
    Dong, Ziwei
    Du, Wei
    Tian, Yu-Chu
    Liang, Chen
    Tang, Yang
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (07) : 4737 - 4748
  • [8] Event-triggered Distributed Optimization Algorithms
    Yang T.
    Xu L.
    Yi X.-L.
    Zhang S.-J.
    Chen R.-J.
    Li Y.-Z.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (01): : 133 - 143
  • [9] Event-Triggered Quantized Communication-Based Distributed Convex Optimization
    Liu, Shuai
    Xie, Lihua
    Quevedo, Daniel E.
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (01): : 167 - 178
  • [10] Distributed Optimization of Nonlinear Multiagent Systems via Event-Triggered Communication
    Liu, Dan
    Shen, Mouquan
    Jing, Yanhui
    Wang, Qing-Guo
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (06) : 2092 - 2096