Distributed Event-Triggered Nonconvex Optimization under Polyak-Lojasiewicz Condition

被引:0
|
作者
Gao, Chao [1 ]
Xu, Lei [1 ]
Zhang, Kunpeng [1 ]
Li, Yuzhe [1 ]
Liu, Zhiwei [2 ]
Yang, Tao [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed nonconvex optimization; Dynamic event-triggered mechanism; Linear convergence; Polyak-Lojasiewicz condition; SYSTEMS;
D O I
10.1109/ICARCV63323.2024.10821649
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the distributed nonconvex optimization problem, where the goal is to minimize the average of local nonconvex cost functions through local information exchange. Firstly, we propose a distributed optimization algorithm that integrates the gradient tracking method with a dynamic event-triggered communication scheme, thereby reducing communication overhead. Secondly, we demonstrate that the algorithm linearly converges to the global optimum under the Polyak-Lojasiewicz condition, which indicates that every stationary point is a global minimizer. The numerical experiment is presented to validate the theoretical results and confirm the algorithm's effectiveness.
引用
收藏
页码:930 / 935
页数:6
相关论文
共 50 条
  • [21] Polyak's Heavy Ball Method Achieves Accelerated Local Rate of Convergence under Polyak-Lojasiewicz Inequality
    Fakultät für Mathematik, Universität Bielefeld, Universitätsstrasse 25, Bielefeld
    33615, Germany
    不详
    68159, Germany
    arXiv,
  • [22] Event-triggered Distributed Optimization Algorithms
    Yang T.
    Xu L.
    Yi X.-L.
    Zhang S.-J.
    Chen R.-J.
    Li Y.-Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (01): : 133 - 143
  • [23] NON-ERGODIC LINEAR CONVERGENCE PROPERTY OF THE DELAYED GRADIENT DESCENT UNDER THE STRONGLY CONVEXITY AND THE POLYAK-LOJASIEWICZ CONDITION
    Choi, Hyung Jun
    Choi, Woocheol
    Seok, Jinmyoung
    arXiv, 2023,
  • [24] Gradient-Type Method for Optimization Problems with Polyak-Lojasiewicz Condition: Relative Inexactness in Gradient and Adaptive Parameters Setting
    Puchinin, Sergei M.
    Stonyakin, Fedor S.
    arXiv, 2023,
  • [25] Non-ergodic linear convergence property of the delayed gradient descent under the strongly convexity and the Polyak-Lojasiewicz condition
    Choi, Hyung Jun
    Choi, Woocheol
    Seok, Jinmyoung
    ANALYSIS AND APPLICATIONS, 2024, 22 (06) : 1023 - 1051
  • [26] Distributed optimization via dynamic event-triggered scheme with metric subregularity condition
    Yu X.
    Chen X.
    Fan Y.
    Cheng S.
    Autonomous Intelligent Systems, 2024, 4 (01):
  • [27] Distributed Optimization with Dynamic Event-Triggered Mechanisms
    Du, Wen
    Yi, Xinlei
    George, Jemin
    Johansson, Karl H.
    Yang, Tao
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 969 - 974
  • [28] Distributed event-triggered optimization for linear programming
    Richert, Dean
    Cortes, Jorge
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 2007 - 2012
  • [29] Event-triggered Broadcasting for Distributed Smooth Optimization
    Liu, Changxin
    Li, Huiping
    Shi, Yang
    Xu, Demin
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 716 - 721
  • [30] Event-triggered Distributed Optimization in Sensor Networks
    Wan, Pu
    Lemmon, Michael D.
    2009 INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN 2009), 2009, : 49 - 60