Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak-Lojasiewicz Condition

被引:0
|
作者
Xu, Lei [1 ,2 ]
Yi, Xinlei [3 ]
Deng, Chao [4 ]
Shi, Yang [2 ]
Chai, Tianyou [1 ]
Yang, Tao [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 2Y2, Canada
[3] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
[4] Nanjing Univ Posts & Telecommun, Inst Adv Technol, Nanjing 210023, Peoples R China
关键词
Cost function; Standards; Convergence; Vectors; Quantization (signal); Distributed algorithms; Deep learning; Gradient tracking algorithm; linear convergence; nonconvex optimization; uniform quantizer; zeroth-order algorithm; SUBGRADIENT METHODS; CONVERGENCE;
D O I
10.1109/TCYB.2024.3384924
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on distributed nonconvex optimization by exchanging information between agents to minimize the average of local nonconvex cost functions. The communication channel between agents is normally constrained by limited bandwidth, and the gradient information is typically unavailable. To overcome these limitations, we propose a quantized distributed zeroth-order algorithm, which integrates the deterministic gradient estimator, the standard uniform quantizer, and the distributed gradient tracking algorithm. We establish linear convergence to a global optimal point for the proposed algorithm by assuming Polyak-Lojasiewicz condition for the global cost function and smoothness condition for the local cost functions. Moreover, the proposed algorithm maintains linear convergence at low-data rates with a proper selection of algorithm parameters. Numerical simulations validate the theoretical results.
引用
收藏
页数:13
相关论文
共 27 条
  • [1] Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak– ${\L}$ ojasiewicz Condition
    Xu, Lei
    Yi, Xinlei
    Deng, Chao
    Shi, Yang
    Chai, Tianyou
    Yang, Tao
    [J]. IEEE Transactions on Cybernetics, 2024, : 1 - 13
  • [2] Asynchronous Parallel Nonconvex Optimization Under the Polyak-Lojasiewicz Condition
    Yazdani, Kasra
    Hale, Matthew
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 524 - 529
  • [3] Zeroth-order Gradient Tracking for Distributed Constrained Optimization
    Cheng, Songsong
    Yu, Xin
    Fan, Yuan
    Xiao, Gaoxi
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 5197 - 5202
  • [4] A Generalized Alternating Method for Bilevel Optimization under the Polyak-Lojasiewicz Condition
    Rensselaer Polytechnic Institute, Troy
    NY, United States
    不详
    NY, United States
    [J]. arXiv, 1600,
  • [5] Zeroth-order algorithms for stochastic distributed nonconvex optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Johansson, Karl H.
    [J]. AUTOMATICA, 2022, 142
  • [6] ZEROTH-ORDER STOCHASTIC PROJECTED GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION
    Liu, Sijia
    Li, Xingguo
    Chen, Pin-Yu
    Haupt, Jarvis
    Amini, Lisa
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1179 - 1183
  • [7] Gradient-Free Algorithms for Solving Stochastic Saddle Optimization Problems with the Polyak-Lojasiewicz Condition
    Sadykov, S. I.
    Lobanov, A. V.
    Raigorodskii, A. M.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (06) : 535 - 547
  • [8] Online Stochastic Gradient Methods Under Sub-Weibull Noise and the Polyak-Lojasiewicz Condition
    Kim, Seunghyun
    Madden, Liam
    Dall'Anese, Emiliano
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 3499 - 3506
  • [9] Online Stochastic Gradient Methods Under Sub-Weibull Noise and the Polyak-Lojasiewicz Condition
    University of Colorado, Department of Applied Mathematics, Boulder, United States
    不详
    [J]. Proc IEEE Conf Decis Control, 2022, (3499-3506):
  • [10] Gradient-Type Method for Optimization Problems with Polyak-Lojasiewicz Condition: Relative Inexactness in Gradient and Adaptive Parameters Setting
    Puchinin, Sergei M.
    Stonyakin, Fedor S.
    [J]. arXiv, 2023,