ZEROTH-ORDER STOCHASTIC PROJECTED GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION

被引:0
|
作者
Liu, Sijia [1 ]
Li, Xingguo [2 ]
Chen, Pin-Yu [1 ]
Haupt, Jarvis [2 ]
Amini, Lisa [1 ]
机构
[1] IBM Res, MIT IBM Watson Lab, Cambridge, MA 02142 USA
[2] Univ Minnesota Twin Cities, Minneapolis, MN USA
关键词
Zeroth-order optimization; projected gradient descent; nonconvex optimization;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we analyze the convergence of the zeroth-order stochastic projected gradient descent (ZO-SPGD) method for constrained convex and nonconvex optimization scenarios where only objective function values (not gradients) are directly available. We show statistical properties of a new random gradient estimator, constructed through random direction samples drawn from a bounded uniform distribution. We prove that ZO-SPGD yields a O(d/bq root T + 1/root T) convergence rate for convex but non-smooth optimization, where d is the number of optimization variables, b is the minibatch size, q is the number of random direction samples for gradient estimation, and T is the number of iterations. For nonconvex optimization, we show that ZO-SPGD achieves O(1/root T) convergence rate but suffers an additional O(d+q/bq) error. Our theoretical investigation on ZO-SPGD provides a general framework to study the convergence rate of zeroth-order algorithms.
引用
收藏
页码:1179 / 1183
页数:5
相关论文
共 50 条
  • [1] Zeroth-order algorithms for stochastic distributed nonconvex optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Johansson, Karl H.
    [J]. AUTOMATICA, 2022, 142
  • [2] Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization
    Liu, Sijia
    Kailkhura, Bhavya
    Chen, Pin-Yu
    Ting, Paishun
    Chang, Shiyu
    Amini, Lisa
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [3] Sequential stochastic blackbox optimization with zeroth-order gradient estimators
    Audet, Charles
    Bigeon, Jean
    Couderc, Romain
    Kokkolaras, Michael
    [J]. AIMS MATHEMATICS, 2023, 8 (11): : 25922 - 25956
  • [4] Zeroth-Order Stochastic Alternating Direction Method of Multipliers for Nonconvex Nonsmooth Optimization
    Huang, Feihu
    Gao, Shangqian
    Chen, Songcan
    Huang, Heng
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2549 - 2555
  • [5] Fast automatic step size selection for zeroth-order nonconvex stochastic optimization
    Yang, Zhuang
    [J]. Expert Systems with Applications, 2021, 174
  • [6] Fast automatic step size selection for zeroth-order nonconvex stochastic optimization
    Yang, Zhuang
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [7] A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD FOR WEAKLY CONVEX STOCHASTIC OPTIMIZATION
    Pougkakiotis, Spyridon
    Kalogerias, Dionysis
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (05): : A2679 - A2702
  • [8] STOCHASTIC FIRST- AND ZEROTH-ORDER METHODS FOR NONCONVEX STOCHASTIC PROGRAMMING
    Ghadimi, Saeed
    Lan, Guanghui
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 2341 - 2368
  • [9] Zeroth-Order Alternating Gradient Descent Ascent Algorithms for A Class of Nonconvex-Nonconcave Minimax Problems
    Xu, Zi
    Wang, Zi-Qi
    Wang, Jun-Lin
    Dai, Yu-Hong
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [10] Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points
    Balasubramanian, Krishnakumar
    Ghadimi, Saeed
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (01) : 35 - 76