Zeroth-order Gradient Tracking for Distributed Constrained Optimization

被引:0
|
作者
Cheng, Songsong [1 ,2 ]
Yu, Xin [2 ]
Fan, Yuan [2 ]
Xiao, Gaoxi [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Anhui Univ, Sch Elect Engn & Automat, Anhui Engn Lab Human Robot Integrat Syst & Intell, Hefei 230601, Peoples R China
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
中国国家自然科学基金;
关键词
Distributed optimization; gradient tracking; zeroth-order gradient; nonidentical set constraints; ALGORITHM; CONVERGENCE; CONSENSUS;
D O I
10.1016/j.ifacol.2023.10.115
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed optimization is an important and practical problem that arose from machine learning, smart grid, and multi-robot systems. In this paper, we propose a zeroth-order gradient tracking method to solve a class of constrained distributed optimization problems with nonidentical feasible sets. We design a more general pseudo-gradient estimation scheme, which includes the existing coordinate descent, discretized gradient descent, and spherical smoothing methods as its special cases. Moreover, we propose pseudo-gradient tracking with projection dynamics to deal with nonidentical feasible set constraints and achieve the optimal solution. We show the proposed algorithm achieves the optimal solution with an O(ln T/ T) convergence rate. Finally, we present an example to demonstrate the effectiveness of the proposed algorithm. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:5197 / 5202
页数:6
相关论文
共 50 条
  • [1] UNBIASED GRADIENT SIMULATION FOR ZEROTH-ORDER OPTIMIZATION
    Chen, Guanting
    [J]. 2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 2947 - 2959
  • [2] Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak-Lojasiewicz Condition
    Xu, Lei
    Yi, Xinlei
    Deng, Chao
    Shi, Yang
    Chai, Tianyou
    Yang, Tao
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024,
  • [3] Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak– ${\L}$ ojasiewicz Condition
    Xu, Lei
    Yi, Xinlei
    Deng, Chao
    Shi, Yang
    Chai, Tianyou
    Yang, Tao
    [J]. IEEE Transactions on Cybernetics, 2024, : 1 - 13
  • [4] Asynchronous Zeroth-Order Distributed Optimization with Residual Feedback
    Shen, Yi
    Zhang, Yan
    Nivison, Scott
    Bell, Zachary, I
    Zavlanos, Michael M.
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 3349 - 3354
  • [5] Zeroth-Order Method for Distributed Optimization With Approximate Projections
    Yuan, Deming
    Ho, Daniel W. C.
    Xu, Shengyuan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (02) : 284 - 294
  • [6] Zeroth-order algorithms for stochastic distributed nonconvex optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Johansson, Karl H.
    [J]. AUTOMATICA, 2022, 142
  • [7] Zeroth-order gradient tracking for decentralized learning with privacy guarantees
    Zhao, Zhongyuan
    Xia, Lunchao
    Jiang, Luyao
    Gao, Wang
    Ge, Quanbo
    [J]. ISA TRANSACTIONS, 2024, 152 : 1 - 14
  • [8] Sequential stochastic blackbox optimization with zeroth-order gradient estimators
    Audet, Charles
    Bigeon, Jean
    Couderc, Romain
    Kokkolaras, Michael
    [J]. AIMS MATHEMATICS, 2023, 8 (11): : 25922 - 25956
  • [9] ZEROTH-ORDER STOCHASTIC PROJECTED GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION
    Liu, Sijia
    Li, Xingguo
    Chen, Pin-Yu
    Haupt, Jarvis
    Amini, Lisa
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1179 - 1183
  • [10] A zeroth-order algorithm for distributed optimization with stochastic stripe observations
    Yinghui Wang
    Xianlin Zeng
    Wenxiao Zhao
    Yiguang Hong
    [J]. Science China Information Sciences, 2023, 66