Segment Anything in Optical Coherence Tomography: SAM 2 for Volumetric Segmentation of Retinal Biomarkers

被引:0
|
作者
Kulyabin, Mikhail [1 ]
Zhdanov, Aleksei [2 ]
Pershin, Andrey [3 ]
Sokolov, Gleb [2 ]
Nikiforova, Anastasia [4 ,5 ]
Ronkin, Mikhail [3 ]
Borisov, Vasilii [3 ]
Maier, Andreas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Comp Sci, Pattern Recognit Lab, D-91058 Erlangen, Germany
[2] VisioMed AI, Golovinskoe Highway 8-2A, Moscow 125212, Russia
[3] Ural Fed Univ Named First President Russia B N Yel, Engn Sch Informat Technol Telecommun & Control Sys, Ekaterinburg 620002, Russia
[4] Ophthalmosurgery Clin Professorskaya Plus, Vostochnaya 30, Ekaterinburg 620075, Russia
[5] Ural State Med Univ, Prevent & Family Med, Repina 3, Ekaterinburg 620028, Russia
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 09期
关键词
OCT; segmentation; SAM; MedSAM; AMD; DME; retina;
D O I
10.3390/bioengineering11090940
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Optical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology for visualizing retinal layers, aiding in the early detection and monitoring of retinal diseases. OCT is useful for detecting diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME), which affect millions of people globally. Over the past decade, the area of application of artificial intelligence (AI), particularly deep learning (DL), has significantly increased. The number of medical applications is also rising, with solutions from other domains being increasingly applied to OCT. The segmentation of biomarkers is an essential problem that can enhance the quality of retinal disease diagnostics. For 3D OCT scans, AI is beneficial since manual segmentation is very labor-intensive. In this paper, we employ the new SAM 2 and MedSAM 2 for the segmentation of OCT volumes for two open-source datasets, comparing their performance with the traditional U-Net. The model achieved an overall Dice score of 0.913 and 0.902 for macular holes (MH) and intraretinal cysts (IRC) on OIMHS and 0.888 and 0.909 for intraretinal fluid (IRF) and pigment epithelial detachment (PED) on the AROI dataset, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Automated volumetric segmentation of retinal fluid on optical coherence tomography
    Wang, Jie
    Zhang, Miao
    Pechauer, Alex D.
    Liu, Liang
    Hwang, Thomas S.
    Wilson, David J.
    Li, Dengwang
    Jia, Yali
    BIOMEDICAL OPTICS EXPRESS, 2016, 7 (04): : 1577 - 1589
  • [2] Automated Volumetric Segmentation of Retinal Fluid using Optical Coherence Tomography
    Wang, Jie
    Pechauer, Alex David
    Zhang, Miao
    Liu, Liang
    Hwang, Thomas S.
    Flaxel, Christina J.
    Lauer, Andreas
    Wilson, David J.
    Li, Dengwang
    Jia, Yali
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [3] User-guided segmentation for volumetric retinal optical coherence tomography images
    Yin, Xin
    Chao, Jennifer R.
    Wang, Ruikang K.
    JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (08)
  • [4] Automated volumetric segmentation of retinal fluid on optical coherence tomography using deep learning
    Guo, Yukun
    Xiong, Honglian
    Hormel, Tristan
    Wang, Jie
    Hwang, Thomas
    Jia, Yali
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [5] Retinal optical coherence tomography biomarkers in dementia
    Goerdt, L.
    Holz, F. G.
    Finger, R. P.
    OPHTHALMOLOGIE, 2024, 121 (02): : 84 - 92
  • [6] RETINAL OPTICAL COHERENCE TOMOGRAPHY IMAGING BIOMARKERS
    Pandya, Bhadra U.
    Grinton, Michael
    Mandelcorn, Efrem D.
    Felfeli, Tina
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2024, 44 (03): : 369 - 380
  • [7] Adapting Segment Anything Model (SAM) for Retinal OCT
    Fazekas, Botond
    Morano, Jose
    Lachinov, Dmitrii
    Aresta, Guilherme
    Bogunovic, Hrvoje
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2023, 2023, 14096 : 92 - 101
  • [8] Segmentation Errors in the Measurement of Volumetric Parameters by Swept-Source Anterior Segment Optical Coherence Tomography
    Chen, Hailiu
    Meng, Jie
    Lu, Peng
    Ye, Dan
    Li, Yunxuan
    Cheng, Lu
    Li, Yangyunhui
    Liang, Xiaoling
    Huang, Wenyong
    Huang, Jingjing
    FRONTIERS IN MEDICINE, 2021, 8
  • [9] Retinal Layer Segmentation in Optical Coherence Tomography Images
    Dodo, Bashir Isa
    Li, Yongmin
    Kaba, Djibril
    Liu, Xiaohui
    IEEE ACCESS, 2019, 7 : 152388 - 152398
  • [10] Automatic segmentation of anterior segment optical coherence tomography images
    Williams, Dominic
    Zheng, Yalin
    Bao, Fangjun
    Elsheikh, Ahmed
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (05)