Context-aware target texture perturbation attack for concealed object detection

被引:0
|
作者
Zhang, Jialin [1 ]
Wang, Xiao [1 ]
Wei, Hui [2 ]
Jiang, Kui [3 ]
Mu, Nan [4 ]
Wang, Zheng [2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
[2] Wuhan Univ, Wuhan, Peoples R China
[3] Harbin Inst Technol, Harbin, Peoples R China
[4] Sichuan Normal Univ, Chengdu, Peoples R China
来源
关键词
Adversarial attack; Concealed object detection; Black-box; Context-aware; CAMOUFLAGE; NETWORK;
D O I
10.1007/s00371-025-03805-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Concealed object detection (COD) has advanced significantly and is crucial in various fields. However, it raises new security and privacy issues, as powerful COD models can potentially reveal sensitive information like human privacy organs or military camouflage. In this paper, we address this issue through the lens of adversarial attacks and introduce a new task: Adversarial Attacks against COD. Compared to general adversarial attacks on object detection models, this new task presents an additional challenge. The challenge lies in generating adversarial perturbations that disrupt the differential information contained within various scenes simultaneously. To address this, In this paper, we introduce a novel adversarial attack method, context-aware target texture perturbation (CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P), specifically designed to fool COD models. CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P generates adversarial perturbations based on background texture information, disrupting the differential features used by COD models to distinguish concealed objects. The attack comprises three modules: perturbation generation, target localization, and perturbation bootstrap. Extensive experiments on benchmark datasets demonstrate CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P's effectiveness in reducing COD model performance by up to 40% while preserving the visual quality of original images. This work highlights the security vulnerabilities of COD models and provides insights into evaluating their robustness.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] CAPT: Context-Aware Provenance Tracing for Attack Investigation
    Tan, Cheng
    Zhao, Lei
    Liu, Weijie
    Xu, Lai
    Wang, Lina
    CHINA COMMUNICATIONS, 2018, 15 (02) : 153 - 169
  • [42] CAPT:Context-Aware Provenance Tracing for Attack Investigation
    Cheng Tan
    Lei Zhao
    Weijie Liu
    Lai Xu
    Lina Wang
    中国通信, 2018, 15 (02) : 153 - 169
  • [43] Adaptive context-aware target tracking method
    Bai Y.-X.
    Lu X.-J.
    Luo R.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (10): : 1834 - 1846
  • [44] Adaptive video object proposals by a context-aware model
    Geng, Wenjing
    Zhang, Chunlong
    Wu, Gangshan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (09) : 10589 - 10614
  • [45] A framework of context-aware object recognition for smart home
    Yu, Xinguo
    Xu, Bin
    Huang, Weimin
    Chew, Boon Fong
    Dai, Junfeng
    PERVASIVE COMPUTING FOR QUALITY OF LIFE ENHANCEMENT, PROCEEDINGS, 2007, 4541 : 9 - +
  • [46] An object-oriented approach for context-aware applications☆
    Fortier, Andres
    Canibano, Nicolas
    Grigera, Julian
    Rossi, Gustavo
    Gordillo, Silvia
    ADVANCES IN SMALLTALK, 2007, 4406 : 23 - +
  • [47] Context-Aware Object Connection Discovery in Large Graphs
    Cheng, James
    Ke, Yiping
    Ng, Wilfred
    Yu, Jeffrey Xu
    ICDE: 2009 IEEE 25TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2009, : 856 - +
  • [48] Context-aware Geometric Object Reconstruction for Mobile Education
    Zheng, Jinxin
    Wang, Yongtao
    Tang, Zhi
    MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 367 - 371
  • [49] Context-aware Deformable Alignment for Video Object Segmentation
    Yang, Jie
    Xia, Mingfu
    Zhou, Xue
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 303 - 309
  • [50] Adaptive video object proposals by a context-aware model
    Wenjing Geng
    Chunlong Zhang
    Gangshan Wu
    Multimedia Tools and Applications, 2018, 77 : 10589 - 10614