Context-aware target texture perturbation attack for concealed object detection

被引:0
|
作者
Zhang, Jialin [1 ]
Wang, Xiao [1 ]
Wei, Hui [2 ]
Jiang, Kui [3 ]
Mu, Nan [4 ]
Wang, Zheng [2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
[2] Wuhan Univ, Wuhan, Peoples R China
[3] Harbin Inst Technol, Harbin, Peoples R China
[4] Sichuan Normal Univ, Chengdu, Peoples R China
来源
关键词
Adversarial attack; Concealed object detection; Black-box; Context-aware; CAMOUFLAGE; NETWORK;
D O I
10.1007/s00371-025-03805-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Concealed object detection (COD) has advanced significantly and is crucial in various fields. However, it raises new security and privacy issues, as powerful COD models can potentially reveal sensitive information like human privacy organs or military camouflage. In this paper, we address this issue through the lens of adversarial attacks and introduce a new task: Adversarial Attacks against COD. Compared to general adversarial attacks on object detection models, this new task presents an additional challenge. The challenge lies in generating adversarial perturbations that disrupt the differential information contained within various scenes simultaneously. To address this, In this paper, we introduce a novel adversarial attack method, context-aware target texture perturbation (CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P), specifically designed to fool COD models. CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P generates adversarial perturbations based on background texture information, disrupting the differential features used by COD models to distinguish concealed objects. The attack comprises three modules: perturbation generation, target localization, and perturbation bootstrap. Extensive experiments on benchmark datasets demonstrate CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P's effectiveness in reducing COD model performance by up to 40% while preserving the visual quality of original images. This work highlights the security vulnerabilities of COD models and provides insights into evaluating their robustness.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Context-aware network for RGB-D salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Miao, Jun
    Ye, Qixiang
    PATTERN RECOGNITION, 2021, 111
  • [22] Multi-scale Fusion with Context-aware Network for Object Detection
    Wang, Hanyuan
    Xu, Jie
    Li, Linke
    Tian, Ye
    Xu, Du
    Xu, Shizhong
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2486 - 2491
  • [23] Remote Sensing Object Detection Based on Gated Context-Aware Module
    Dong, Xiaohu
    Qin, Yao
    Fu, Ruigang
    Gao, Yinghui
    Liu, Songlin
    Ye, Yuanxin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Context-Aware Saliency Detection
    Goferman, Stas
    Zelnik-Manor, Lihi
    Tal, Ayellet
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2376 - 2383
  • [25] Context-Aware Drone Detection
    Oligeri, Gabriele
    Sciancalepore, Savio
    CPSS'22: PROCEEDINGS OF THE 8TH ACM CYBER-PHYSICAL SYSTEM SECURITY WORKSHOP, 2022, : 63 - 71
  • [26] Context-Aware Saliency Detection
    Goferman, Stas
    Zelnik-Manor, Lihi
    Tal, Ayellet
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (10) : 1915 - 1926
  • [27] Context-Aware Drift Detection
    Cobb, Oliver
    Van Looveren, Arnaud
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [28] Dynamic Context-Aware Pyramid Network for Infrared Small Target Detection
    Chen, Xiaolong
    Li, Jing
    Gao, Tan
    Piao, Yongjie
    Ji, Haolin
    Yang, Biao
    Xu, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 13780 - 13794
  • [29] Context-Aware Synthesis and Placement of Object Instances
    Lee, Donghoon
    Liu, Sifei
    Gu, Jinwei
    Liu, Ming-Yu
    Yang, Ming-Hsuan
    Kautz, Jan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [30] CONTEXT-AWARE NATURAL INTEGRATION OF ADVERTISEMENT OBJECT
    Ding, Yanhong
    Teng, Guowei
    Yao, Yuwei
    An, Ping
    Li, Kai
    Li, Xiang
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4689 - 4693