Context-aware target texture perturbation attack for concealed object detection

被引:0
|
作者
Zhang, Jialin [1 ]
Wang, Xiao [1 ]
Wei, Hui [2 ]
Jiang, Kui [3 ]
Mu, Nan [4 ]
Wang, Zheng [2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
[2] Wuhan Univ, Wuhan, Peoples R China
[3] Harbin Inst Technol, Harbin, Peoples R China
[4] Sichuan Normal Univ, Chengdu, Peoples R China
来源
关键词
Adversarial attack; Concealed object detection; Black-box; Context-aware; CAMOUFLAGE; NETWORK;
D O I
10.1007/s00371-025-03805-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Concealed object detection (COD) has advanced significantly and is crucial in various fields. However, it raises new security and privacy issues, as powerful COD models can potentially reveal sensitive information like human privacy organs or military camouflage. In this paper, we address this issue through the lens of adversarial attacks and introduce a new task: Adversarial Attacks against COD. Compared to general adversarial attacks on object detection models, this new task presents an additional challenge. The challenge lies in generating adversarial perturbations that disrupt the differential information contained within various scenes simultaneously. To address this, In this paper, we introduce a novel adversarial attack method, context-aware target texture perturbation (CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P), specifically designed to fool COD models. CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P generates adversarial perturbations based on background texture information, disrupting the differential features used by COD models to distinguish concealed objects. The attack comprises three modules: perturbation generation, target localization, and perturbation bootstrap. Extensive experiments on benchmark datasets demonstrate CAT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CAT}<^>2$$\end{document}P's effectiveness in reducing COD model performance by up to 40% while preserving the visual quality of original images. This work highlights the security vulnerabilities of COD models and provides insights into evaluating their robustness.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Context-aware Siamese network for object tracking
    Zhang, Jianwei
    Wang, Jingchao
    Zhang, Huanlong
    Miao, Mengen
    Wu, Di
    IET IMAGE PROCESSING, 2023, 17 (01) : 215 - 226
  • [32] Formalizing Object Typicality in Context-aware Ontology
    Cai, Yi
    Leung, Ho-fung
    20TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL 2, PROCEEDINGS, 2008, : 233 - 240
  • [33] Camouflaged Object Detection via Context-Aware Cross-Level Fusion
    Chen, Geng
    Liu, Si-Jie
    Sun, Yu-Jia
    Ji, Ge-Peng
    Wu, Ya-Feng
    Zhou, Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6981 - 6993
  • [34] Semantic Context-Aware Network for Multiscale Object Detection in Remote Sensing Images
    Zhang, Ke
    Wu, Yulin
    Wang, Jingyu
    Wang, Yezi
    Wang, Qi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [35] CONTEXT-AWARE DATA AUGMENTATION FOR LIDAR 3D OBJECT DETECTION
    Hu, Xuzhong
    Duan, Zaipeng
    Huang, Xiao
    Xu, Ziwen
    Ming, Delie
    Ma, Jie
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 11 - 15
  • [36] Interactive context-aware network for RGB-T salient object detection
    Wang, Yuxuan
    Dong, Feng
    Zhu, Jinchao
    Chen, Jianren
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 72153 - 72174
  • [37] A Fast, Modular Scene Understanding System using Context-Aware Object Detection
    Cadena, Cesar
    Dick, Anthony
    Reid, Ian D.
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 4859 - 4866
  • [38] A Robust Context-Aware Proposal Refinement Method for Weakly Supervised Object Detection
    Awan, Mehwish
    Shin, Jitae
    IEEE ACCESS, 2020, 8 (08): : 199768 - 199780
  • [39] Context-aware Cross-level Fusion Network for Camouflaged Object Detection
    Sun, Yujia
    Chen, Geng
    Zhou, Tao
    Zhang, Yi
    Liu, Nian
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1025 - 1031
  • [40] CANet: Context-aware Aggregation Network for Salient Object Detection of Surface Defects*
    Wan, Bin
    Zhou, Xiaofei
    Zhu, Bin
    Xiao, Mang
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Yan, Chenggang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93