MULTIPLICITY OF 2-NODAL SOLUTIONS OF THE YAMABE EQUATION

被引:0
|
作者
Ortiz, Jorge davila [1 ]
Gonzalez, Hector barrantes [2 ]
Lima, Isidro h. munive [3 ]
机构
[1] ITESM, Dept Engn & Sci, Campus Leon Guanajuato, Leon Guanajuato 37190, Mexico
[2] Univ Costa Rica, Sede Occidente, Dept Ciencias Nat, Secc Matemat, San Jose 20201, Costa Rica
[3] Univ Guadalajara, Dept Math, CUCEI, Guadalajara 44430, Mexico
关键词
Yamabe equation; nodal solution; gradient flow; center of mass; NONLINEAR ELLIPTIC PROBLEM; SCALAR CURVATURE; INVARIANT;
D O I
10.12775/TMNA.2023.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a closed Riemannian manifold ( M,g ), we use the gradient flow method and Sign-Changing Critical Point Theory to prove multiplicity results for 2-nodal solutions of a sub critical non-linear equation on ( M,g ), see (1.1) below. If ( N, h ) is a closed Riemannian manifold of constant positive scalar curvature our result gives multiplicity results for the Yamabe-type equation on the Riemannian product (M x N, g +epsilon h), for epsilon > 0 small.
引用
收藏
页码:361 / 379
页数:19
相关论文
共 50 条