MULTIPLICITY OF 2-NODAL SOLUTIONS OF THE YAMABE EQUATION

被引:0
|
作者
Ortiz, Jorge davila [1 ]
Gonzalez, Hector barrantes [2 ]
Lima, Isidro h. munive [3 ]
机构
[1] ITESM, Dept Engn & Sci, Campus Leon Guanajuato, Leon Guanajuato 37190, Mexico
[2] Univ Costa Rica, Sede Occidente, Dept Ciencias Nat, Secc Matemat, San Jose 20201, Costa Rica
[3] Univ Guadalajara, Dept Math, CUCEI, Guadalajara 44430, Mexico
关键词
Yamabe equation; nodal solution; gradient flow; center of mass; NONLINEAR ELLIPTIC PROBLEM; SCALAR CURVATURE; INVARIANT;
D O I
10.12775/TMNA.2023.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a closed Riemannian manifold ( M,g ), we use the gradient flow method and Sign-Changing Critical Point Theory to prove multiplicity results for 2-nodal solutions of a sub critical non-linear equation on ( M,g ), see (1.1) below. If ( N, h ) is a closed Riemannian manifold of constant positive scalar curvature our result gives multiplicity results for the Yamabe-type equation on the Riemannian product (M x N, g +epsilon h), for epsilon > 0 small.
引用
收藏
页码:361 / 379
页数:19
相关论文
共 50 条
  • [41] Multiplicity result for a nonhomogeneous Yamabe type equation involving the Kohn Laplacian
    Maalaoui, Ali
    Martino, Vittorio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 333 - 339
  • [42] Asymptotic Expansions of Solutions of the Yamabe Equation and theσk-Yamabe Equation near Isolated Singular Points
    Han, Qing
    Li, Xiaoxiao
    Li, Yichao
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (09) : 1915 - 1970
  • [43] 2-nodal domain theorems for higher-dimensional circle bundles
    Jung, Junehyuk
    Zelditch, Steve
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (04) : 1451 - 1474
  • [44] An Upper Bound for the Least Energy of a Nodal Solution to the Yamabe Equation on the Sphere
    Clapp, Monica
    Pistoia, Angela
    Weth, Tobias
    MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 173 - 184
  • [45] Nodal solutions for the Choquard equation
    Ghimenti, Marco
    Van Schaftingen, Jean
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) : 107 - 135
  • [46] Solutions of the Yamabe Equation by Lyapunov-Schmidt Reduction
    Davila, Jorge
    Munive, Isidro H.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) : 8080 - 8104
  • [47] Isolated Singularities of Solutions to the Yamabe Equation in Dimension 6
    Xiong, J.
    Zhang, L.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) : 9571 - 9597
  • [48] On the Multiplicity of Nodal Solutions to a Singularly Perturbed Neumann Problem
    Anna Maria Micheletti
    Angela Pistoia
    Mediterranean Journal of Mathematics, 2008, 5 : 285 - 294
  • [49] On the Multiplicity of Nodal Solutions to a Singularly Perturbed Neumann Problem
    Micheletti, Anna Maria
    Pistoia, Angela
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2008, 5 (03) : 285 - 294
  • [50] Multiplicity of positive and nodal solutions for scalar field equations
    Cerami, Giovanna
    Molle, Riccardo
    Passaseo, Donato
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (10) : 3554 - 3606