Development and Validation of a Machine Learning Model for Early Detection of Untreated Infection

被引:0
|
作者
Buell, Kevin G. [1 ]
Carey, Kyle A. [1 ]
Dussault, Nicole [2 ]
Parker, William F. [1 ]
Dumanian, Jay [2 ]
Bhavani, Sivasubramanium V. [3 ]
Gilbert, Emily R. [4 ]
Winslow, Christopher J. [5 ]
Shah, Nirav S. [1 ,5 ]
Afshar, Majid [6 ]
Edelson, Dana P. [1 ]
Churpek, Matthew M. [6 ,7 ]
机构
[1] Univ Chicago, Med Ctr, Dept Med, Chicago, IL 60637 USA
[2] Duke Univ, Dept Med, Raleigh, NC USA
[3] Emory Univ, Dept Med, Atlanta, GA USA
[4] Loyola Univ, Dept Med, Chicago, IL USA
[5] Endeavor Hlth, Dept Med, Evanston, IL USA
[6] Univ Wisconsin, Dept Med, Madison, WI USA
[7] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
关键词
anti-infective agents; antimicrobial stewardship; infections; machine learning; INTERNATIONAL CONSENSUS DEFINITIONS; INFLAMMATORY RESPONSE SYNDROME; ORGAN FAILURE; SEPSIS; HOSPITALS; SURVIVAL; DURATION; CRITERIA; TRENDS; SIRS;
D O I
10.1097/CCE.0000000000001165
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BACKGROUND: Early diagnostic uncertainty for infection causes delays in antibiotic administration in infected patients and unnecessary antibiotic administration in noninfected patients. OBJECTIVE: To develop a machine learning model for the early detection of untreated infection (eDENTIFI), with the presence of infection determined by clinician chart review. DERIVATION COHORT: Three thousand three hundred fifty-seven adult patients hospitalized between 2006 and 2018 at two health systems in Illinois, United States. VALIDATION COHORT: We validated in 1632 patients in a third Illinois health system using area under the receiver operating characteristic curve (AUC). PREDICTION MODEL: Using a longitudinal discrete-time format, we trained a gradient boosted machine model to predict untreated infection in the next 6 hours using routinely available patient demographics, vital signs, and laboratory results. RESULTS: eDENTIFI had an AUC of 0.80 (95% CI, 0.79-0.81) in the validation cohort and outperformed the systemic inflammatory response syndrome criteria with an AUC of 0.64 (95% CI, 0.64-0.65; p < 0.001). The most important features were body mass index, age, temperature, and heart rate. Using a threshold with a 47.6% sensitivity, eDENTIFI detected infection a median 2.0 hours (interquartile range, 0.9-5.2 hr) before antimicrobial administration, with a negative predictive value of 93.6%. Antibiotic administration guided by eDENTIFI could have decreased unnecessary IV antibiotic administration in noninfected patients by 10.8% absolute or 46.4% relative percentage points compared with clinicians. CONCLUSION: eDENTIFI could both decrease the time to antimicrobial administration in infected patients and unnecessary antibiotic administration in noninfected patients. Further prospective validation is needed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A risk prediction model based on machine learning for early cognitive impairment in hypertension: Development and validation study
    Zhong, Xia
    Yu, Jie
    Jiang, Feng
    Chen, Haoyu
    Wang, Zhenyuan
    Teng, Jing
    Jiao, Huachen
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [22] A deep learning system for detection of early Barrett's neoplasia: a model development and validation study
    Fockens, K. N.
    Jong, M. R.
    Jukema, J. B.
    Boers, T. G. W.
    Kusters, C. H. J.
    van der Putten, J. A.
    Pouw, R. E.
    Duits, L. C.
    Montazeri, N. S. M.
    van Munster, S. N.
    Weusten, B. L. A. M.
    Herrero, L. Alvarez
    Houben, M. H. M. G.
    Nagengast, W. B.
    Westerhof, J.
    Alkhalaf, A.
    Mallant-Hent, R. C.
    Scholten, P.
    Ragunath, K.
    Seewald, S.
    Elbe, P.
    Baldaque-Silva, F.
    Barret, M.
    Fernandez-Sordo, J. Ortiz
    Villarejo, G. Moral
    Pech, O.
    Beyna, T.
    van der Sommen, F.
    de With, P. H.
    de Groof, A. J.
    Bergman, J. J.
    LANCET DIGITAL HEALTH, 2023, 5 (12): : E905 - E916
  • [23] Development of machine learning model for urinary tract infection prediction
    Bucker, D.
    Rocha, L.
    Resende, L.
    Mourao, P.
    Liu, S.
    Magnani, B.
    Vasconcellos, L.
    CLINICA CHIMICA ACTA, 2024, 558
  • [24] Development and validation of a machine-learning model for prediction of shoulder dystocia
    Tsur, A.
    Batsry, L.
    Toussia-Cohen, S.
    Rosenstein, M. G.
    Barak, O.
    Brezinov, Y.
    Yoeli-Ullman, R.
    Sivan, E.
    Sirota, M.
    Druzin, M. L.
    Stevenson, D. K.
    Blumenfeld, Y. J.
    Aran, D.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2020, 56 (04) : 588 - 596
  • [25] Development and experimental validation of a machine learning model for the prediction of new antimalarials
    Kore, Mukul
    Acharya, Dimple
    Sharma, Lakshya
    Vembar, Shruthi Sridhar
    Sundriyal, Sandeep
    BMC CHEMISTRY, 2025, 19 (01)
  • [26] Development and Temporal Validation of a Machine Learning Model to Predict Clinical Deterioration
    Foote, Henry P.
    Shaikh, Zohaib
    Witt, Daniel
    Shen, Tong
    Ratliff, William
    Shi, Harvey
    Gao, Michael
    Nichols, Marshall
    Sendak, Mark
    Balu, Suresh
    Osborne, Karen
    Kumar, Karan R.
    Jackson, Kimberly
    McCrary, Andrew W.
    Li, Jennifer S.
    HOSPITAL PEDIATRICS, 2024, 14 (01) : 11 - 20
  • [27] Using Machine Learning to Predict the Duration of AtrialFibrillation:Model Development and Validation
    Shimoo, Satoshi
    Senoo, Keitaro
    Okawa, Taku
    Kawai, Kohei
    Makino, Masahiro
    Munakata, Jun
    Tomura, Nobunari
    Iwakoshi, Hibiki
    Nishimura, Tetsuro
    Shiraishi, Hirokazu
    Inoue, Keiji
    Matoba, Satoaki
    JMIR MEDICAL INFORMATICS, 2024, 12
  • [28] Machine Learning Approach for Hemodialysis Prescription: Model Development and Validation Study
    Bian, Xueqin
    Zhou, Yang
    Ye, Hong
    Yang, Junwei
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 696 - 696
  • [29] Development and Validation of a Machine Learning Model for Early Prediction of Sepsis Onset in Hospital Inpatients from All Departments
    Thiboud, Pierre-Elliott
    Francois, Quentin
    Faure, Cecile
    Chaufferin, Gilles
    Arribe, Barthelemy
    Ettahar, Nicolas
    DIAGNOSTICS, 2025, 15 (03)
  • [30] Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia
    Bu, Zhi-Jun
    Jiang, Nan
    Li, Ke-Cheng
    Lu, Zhi-Lin
    Zhang, Nan
    Yan, Shao-Shuai
    Chen, Zhi-Lin
    Hao, Yu-Han
    Zhang, Yu-Huan
    Xu, Run-Bing
    Chi, Han-Wei
    Chen, Zu-Yi
    Liu, Jian-Ping
    Wang, Dan
    Xu, Feng
    Liu, Zhao-Lan
    MEDICINE, 2024, 103 (30)