Development and Temporal Validation of a Machine Learning Model to Predict Clinical Deterioration

被引:2
|
作者
Foote, Henry P. [1 ]
Shaikh, Zohaib [3 ,6 ]
Witt, Daniel [3 ,7 ]
Shen, Tong [4 ]
Ratliff, William [3 ]
Shi, Harvey [3 ]
Gao, Michael [3 ]
Nichols, Marshall [3 ]
Sendak, Mark [3 ]
Balu, Suresh [3 ]
Osborne, Karen [5 ]
Kumar, Karan R. [2 ]
Jackson, Kimberly [2 ]
McCrary, Andrew W. [1 ]
Li, Jennifer S. [1 ]
机构
[1] Duke Univ, Div Pediat Cardiol, Durham, NC USA
[2] Duke Univ, Pediat Crit Care Med, Durham, NC USA
[3] Duke Univ, Duke Inst Hlth Innovat, Durham, NC USA
[4] Duke Univ, Dept Biomed Engn, Durham, NC USA
[5] Duke Univ, Duke Univ Hlth Syst, Durham, NC USA
[6] Weill Cornell Med Ctr, Dept Med, New York, NY USA
[7] Mayo Clin, Alix Sch Med, Rochester, MN USA
关键词
EARLY WARNING SYSTEM; INTENSIVE-CARE-UNIT; SCORE; MORTALITY; CHILDREN; IMPACT; NEED;
D O I
10.1542/hpeds.2023-007308
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
OBJECTIVES Early warning scores detecting clinical deterioration in pediatric inpatients have wide-ranging performance and use a limited number of clinical features. This study developed a machine learning model leveraging multiple static and dynamic clinical features from the electronic health record to predict the composite outcome of unplanned transfer to the ICU within 24 hours and inpatient mortality within 48 hours in hospitalized children.METHODS Using a retrospective development cohort of 17 630 encounters across 10 388 patients, 2 machine learning models (light gradient boosting machine [LGBM] and random forest) were trained on 542 features and compared with our institutional Pediatric Early Warning Score (I-PEWS).RESULTS The LGBM model significantly outperformed I-PEWS based on receiver operating characteristic curve (AUROC) for the composite outcome of ICU transfer or mortality for both internal validation and temporal validation cohorts (AUROC 0.785 95% confidence interval [0.780-0.791] vs 0.708 [0.701-0.715] for temporal validation) as well as lead-time before deterioration events (median 11 hours vs 3 hours; P = .004). However, LGBM performance as evaluated by precision recall curve was lesser in the temporal validation cohort with associated decreased positive predictive value (6% vs 29%) and increased number needed to evaluate (17 vs 3) compared with I-PEWS.CONCLUSIONS Our electronic health record based machine learning model demonstrated improved AUROC and lead-time in predicting clinical deterioration in pediatric inpatients 24 to 48 hours in advance compared with I-PEWS. Further work is needed to optimize model positive predictive value to allow for integration into clinical practice.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 50 条
  • [1] Development and Validation of a Machine Learning Algorithm Using Clinical Pages to Predict Imminent Clinical Deterioration
    Bryan D. Steitz
    Allison B. McCoy
    Thomas J. Reese
    Siru Liu
    Liza Weavind
    Kipp Shipley
    Elise Russo
    Adam Wright
    Journal of General Internal Medicine, 2024, 39 : 27 - 35
  • [2] Development and Validation of a Machine Learning Algorithm Using Clinical Pages to Predict Imminent Clinical Deterioration
    Steitz, Bryan D. D.
    McCoy, Allison B. B.
    Reese, Thomas J. J.
    Liu, Siru
    Weavind, Liza
    Shipley, Kipp
    Russo, Elise
    Wright, Adam
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2024, 39 (01) : 27 - 35
  • [3] DEVELOPMENT AND VALIDATION OF A PEDIATRIC ICU DETERIORATION PREDICTION MODEL USING MACHINE LEARNING
    Mehta, Sanjiv
    Tweedy, Eamonn
    Shi, Lingyun
    Ruiz, Victor
    Nishisaki, Akira
    Morgan, Ryan
    Sutton, Robert
    Tsui, Fuchiang Rich
    CRITICAL CARE MEDICINE, 2025, 53 (01)
  • [4] Using Machine Learning to Predict the Duration of AtrialFibrillation:Model Development and Validation
    Shimoo, Satoshi
    Senoo, Keitaro
    Okawa, Taku
    Kawai, Kohei
    Makino, Masahiro
    Munakata, Jun
    Tomura, Nobunari
    Iwakoshi, Hibiki
    Nishimura, Tetsuro
    Shiraishi, Hirokazu
    Inoue, Keiji
    Matoba, Satoaki
    JMIR MEDICAL INFORMATICS, 2024, 12
  • [5] Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality
    Kanwal, Fasiha
    Taylor, Thomas J.
    Kramer, Jennifer R.
    Cao, Yumei
    Smith, Donna
    Gifford, Allen L.
    El-Serag, Hashem B.
    Naik, Aanand D.
    Asch, Steven M.
    JAMA NETWORK OPEN, 2020, 3 (11) : E2023780
  • [6] Development and validation of a machine learning model to predict myocardial blood flow and clinical outcomes from patients' electrocardiograms
    Alahdab, Fares
    Saad, Maliazurina Binti
    Ahmed, Ahmed Ibrahim
    Al Tashi, Qasem
    Aminu, Muhammad
    Han, Yushui
    Moody, Jonathan B.
    Murthy, Venkatesh L.
    Wu, Jia
    Al-Mallah, Mouaz H.
    CELL REPORTS MEDICINE, 2024, 5 (10)
  • [7] Using Machine Learning to Predict the Effective Treatments for Patients With Clinical Deterioration
    Ingebritsen, R.
    Qyli, T.
    Spicer, A.
    Carey, K.
    Murnin, E.
    Winslow, C.
    Gilbert, E. R.
    Rao, S.
    Picart, J.
    Penumalee, L.
    Follman, B. D.
    Nezirova, L. K.
    Tully, S. T.
    Benjamin, C.
    Nye, C.
    Shah, N. S.
    Afshar, M.
    Edelson, D. P.
    Churpek, M. M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [8] Development and validation of a practical machine learning model to predict sepsis after liver transplantation
    Chen, Chaojin
    Chen, Bingcheng
    Yang, Jing
    Li, Xiaoyue
    Peng, Xiaorong
    Feng, Yawei
    Guo, Rongchang
    Zou, Fengyuan
    Zhou, Shaoli
    Hei, Ziqing
    ANNALS OF MEDICINE, 2023, 55 (01) : 624 - 633
  • [9] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Alaimo, Laura
    Lima, Henrique A.
    Moazzam, Zorays
    Endo, Yutaka
    Yang, Jason
    Ruzzenente, Andrea
    Guglielmi, Alfredo
    Aldrighetti, Luca
    Weiss, Matthew
    Bauer, Todd W. W.
    Alexandrescu, Sorin
    Poultsides, George A. A.
    Maithel, Shishir K. K.
    Marques, Hugo P. P.
    Martel, Guillaume
    Pulitano, Carlo
    Shen, Feng
    Cauchy, Francois
    Koerkamp, Bas Groot
    Endo, Itaru
    Kitago, Minoru
    Pawlik, Timothy M. M.
    ANNALS OF SURGICAL ONCOLOGY, 2023, 30 (09) : 5406 - 5415
  • [10] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Laura Alaimo
    Henrique A. Lima
    Zorays Moazzam
    Yutaka Endo
    Jason Yang
    Andrea Ruzzenente
    Alfredo Guglielmi
    Luca Aldrighetti
    Matthew Weiss
    Todd W. Bauer
    Sorin Alexandrescu
    George A. Poultsides
    Shishir K. Maithel
    Hugo P. Marques
    Guillaume Martel
    Carlo Pulitano
    Feng Shen
    François Cauchy
    Bas Groot Koerkamp
    Itaru Endo
    Minoru Kitago
    Timothy M. Pawlik
    Annals of Surgical Oncology, 2023, 30 : 5406 - 5415