Development and Validation of a Machine Learning Model for Early Detection of Untreated Infection

被引:0
|
作者
Buell, Kevin G. [1 ]
Carey, Kyle A. [1 ]
Dussault, Nicole [2 ]
Parker, William F. [1 ]
Dumanian, Jay [2 ]
Bhavani, Sivasubramanium V. [3 ]
Gilbert, Emily R. [4 ]
Winslow, Christopher J. [5 ]
Shah, Nirav S. [1 ,5 ]
Afshar, Majid [6 ]
Edelson, Dana P. [1 ]
Churpek, Matthew M. [6 ,7 ]
机构
[1] Univ Chicago, Med Ctr, Dept Med, Chicago, IL 60637 USA
[2] Duke Univ, Dept Med, Raleigh, NC USA
[3] Emory Univ, Dept Med, Atlanta, GA USA
[4] Loyola Univ, Dept Med, Chicago, IL USA
[5] Endeavor Hlth, Dept Med, Evanston, IL USA
[6] Univ Wisconsin, Dept Med, Madison, WI USA
[7] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
关键词
anti-infective agents; antimicrobial stewardship; infections; machine learning; INTERNATIONAL CONSENSUS DEFINITIONS; INFLAMMATORY RESPONSE SYNDROME; ORGAN FAILURE; SEPSIS; HOSPITALS; SURVIVAL; DURATION; CRITERIA; TRENDS; SIRS;
D O I
10.1097/CCE.0000000000001165
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BACKGROUND: Early diagnostic uncertainty for infection causes delays in antibiotic administration in infected patients and unnecessary antibiotic administration in noninfected patients. OBJECTIVE: To develop a machine learning model for the early detection of untreated infection (eDENTIFI), with the presence of infection determined by clinician chart review. DERIVATION COHORT: Three thousand three hundred fifty-seven adult patients hospitalized between 2006 and 2018 at two health systems in Illinois, United States. VALIDATION COHORT: We validated in 1632 patients in a third Illinois health system using area under the receiver operating characteristic curve (AUC). PREDICTION MODEL: Using a longitudinal discrete-time format, we trained a gradient boosted machine model to predict untreated infection in the next 6 hours using routinely available patient demographics, vital signs, and laboratory results. RESULTS: eDENTIFI had an AUC of 0.80 (95% CI, 0.79-0.81) in the validation cohort and outperformed the systemic inflammatory response syndrome criteria with an AUC of 0.64 (95% CI, 0.64-0.65; p < 0.001). The most important features were body mass index, age, temperature, and heart rate. Using a threshold with a 47.6% sensitivity, eDENTIFI detected infection a median 2.0 hours (interquartile range, 0.9-5.2 hr) before antimicrobial administration, with a negative predictive value of 93.6%. Antibiotic administration guided by eDENTIFI could have decreased unnecessary IV antibiotic administration in noninfected patients by 10.8% absolute or 46.4% relative percentage points compared with clinicians. CONCLUSION: eDENTIFI could both decrease the time to antimicrobial administration in infected patients and unnecessary antibiotic administration in noninfected patients. Further prospective validation is needed.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Development and Validation of a Postpartum Depression Risk Prediction Model using Machine Learning
    Wang, Shuojia
    Hermann, Alison
    Joly, Rochelle
    Pathak, Jyotishman
    Zhang, Yiye
    INDIAN JOURNAL OF PSYCHIATRY, 2020, 62 : S85 - S85
  • [42] Predicting Complications in Breast Reconstruction Development and Prospective Validation of a Machine Learning Model
    Braun, Sterling E.
    Sinik, Lauren M.
    Meyer, Anne M.
    Larson, Kelsey E.
    Butterworth, James A.
    ANNALS OF PLASTIC SURGERY, 2023, 91 (02) : 282 - 286
  • [43] Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality
    Kanwal, Fasiha
    Taylor, Thomas J.
    Kramer, Jennifer R.
    Cao, Yumei
    Smith, Donna
    Gifford, Allen L.
    El-Serag, Hashem B.
    Naik, Aanand D.
    Asch, Steven M.
    JAMA NETWORK OPEN, 2020, 3 (11) : E2023780
  • [44] Development and Validation of a Machine Learning-Based Prognostic Model for Atypical Meningioma
    Kim, D.
    Kim, Y.
    Sung, W.
    Kim, I. A.
    Cho, J.
    Lee, J. H.
    Grassberger, C.
    Byun, H. K.
    Chang, W. I.
    Ren, L.
    Gong, Y.
    Wee, C. W.
    Hua, L.
    Yoon, H. I.
    MEDICAL PHYSICS, 2024, 51 (10) : 7968 - 7968
  • [45] Development and validation of a clinical prediction model for glioma grade using machine learning
    Wu, Mingzhen
    Luan, Jixin
    Zhang, Di
    Fan, Hua
    Qiao, Lishan
    Zhang, Chuanchen
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (03) : 1977 - 1990
  • [46] Development and external validation of a machine learning model for prediction of survival in extremity leiomyosarcoma
    Yu, Austin
    Lee, Linus
    Yi, Thomas
    Fice, Michael
    Achar, Rohan K.
    Tepper, Sarah
    Jones, Conor
    Klein, Evan
    Buac, Neil
    Lopez-Hisijos, Nicolas
    Colman, Matthew W.
    Gitelis, Steven
    Blank, Alan T.
    SURGICAL ONCOLOGY-OXFORD, 2024, 57
  • [47] Development and External Validation of a Machine Learning Model for Prediction of Potential Transfer to the PICU
    Mayampurath, Anoop
    Sanchez-Pinto, L. Nelson
    Hegermiller, Emma
    Erondu, Amarachi
    Carey, Kyle
    Jani, Priti
    Gibbons, Robert
    Edelson, Dana
    Churpek, Matthew M.
    PEDIATRIC CRITICAL CARE MEDICINE, 2022, 23 (07) : 514 - 523
  • [48] DEVELOPMENT AND VALIDATION OF A PEDIATRIC ICU DETERIORATION PREDICTION MODEL USING MACHINE LEARNING
    Mehta, Sanjiv
    Tweedy, Eamonn
    Shi, Lingyun
    Ruiz, Victor
    Nishisaki, Akira
    Morgan, Ryan
    Sutton, Robert
    Tsui, Fuchiang Rich
    CRITICAL CARE MEDICINE, 2025, 53 (01)
  • [49] Development and Validation of KCPREDICT: A Deep Learning Model for Early Detection of Coronary Artery Lesions in Kawasaki Disease Patients
    Yang, Lei
    Shen, Xiaoyu
    Liu, Yiman
    Chen, Jiangang
    Zou, Yuwen
    Xu, Lihao
    Ji, Wei
    Zhang, Yuqi
    Liu, Tingliang
    Cao, Qing
    PEDIATRIC CARDIOLOGY, 2025,
  • [50] Development and validation of explainable machine-learning models for carotid atherosclerosis early screening
    Yun, Ke
    He, Tao
    Zhen, Shi
    Quan, Meihui
    Yang, Xiaotao
    Man, Dongliang
    Zhang, Shuang
    Wang, Wei
    Han, Xiaoxu
    JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)