On the uniqueness and stability of solutions to the control problems for the electron drift-diffusion model

被引:0
|
作者
Brizitskii, R. V. [1 ]
Maksimova, N. N. [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Far East Branch, Ul Radio 7, Vladivostok 690041, Russia
[2] Amur State Univ, Dept Math Anal & Modeling, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
[3] Amur State Univ, Lab Math Modeling Complex Phys & Biol Syst, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
关键词
optimality system; uniqueness of the optimal solution; electron drift-diffusion model; polar inhomogeneous dielectric charging model; control problem; local stability estimates; CHARGING PROCESSES; FERROELECTRICS; SIMULATION; HEAT; SEM;
D O I
10.35634/vm250102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The issues of uniqueness and stability of solutions to the control problems for the model of electron-induced charging of an inhomogeneous polar dielectric are studied. Sufficient conditions for the uniqueness and stability of optimal solutions to the considered extremum problems are established, and the local estimates of their stability with respect to small perturbations of the cost functionals are derived.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 50 条
  • [41] The Stability Criterion of a Semiconductor Superlattice in the Drift-Diffusion Approximation
    Zhukovskii, V. Ch
    Prudskikh, N. S.
    Golovatyuk, S. E.
    Krevchik, V. D.
    Semenov, M. B.
    Shorokhov, A. V.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2018, 73 (04) : 398 - 400
  • [42] ASYMPTOTIC BEHAVIORS AND CLASSICAL LIMITS OF SOLUTIONS TO A QUANTUM DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    Nishibata, Shinya
    Shigetay, Naotaka
    Suzuki, Masahiro
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (06): : 909 - 936
  • [43] A SPLITTING SCHEME FOR A DRIFT-DIFFUSION MODEL OF SEMICONDUCTORS
    BEREZIN, YA
    DMITRIEVA, OE
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1988, 7 (04) : 227 - 232
  • [44] Entropic discretization of a quantum drift-diffusion model
    Gallego, S
    Méhats, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 1828 - 1849
  • [45] Optimizing sequential decisions in the drift-diffusion model
    Nguyen, Khanh P.
    Josic, Kresimir
    Kilpatrick, Zachary P.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2019, 88 : 32 - 47
  • [47] Generalized drift-diffusion model for miniband superlattices
    Bonilla, LL
    Escobedo, R
    Perales, A
    PHYSICAL REVIEW B, 2003, 68 (24)
  • [48] Quantum drift-diffusion model for IMPATT devices
    Aritra Acharyya
    Subhashri Chatterjee
    Jayabrata Goswami
    Suranjana Banerjee
    J. P. Banerjee
    Journal of Computational Electronics, 2014, 13 : 739 - 752
  • [49] Quantum drift-diffusion model for IMPATT devices
    Acharyya, Aritra
    Chatterjee, Subhashri
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 739 - 752
  • [50] The semiclassical limit in the quantum drift-diffusion model
    Qiang Chang Ju
    Acta Mathematica Sinica, English Series, 2009, 25 : 253 - 264