On the uniqueness and stability of solutions to the control problems for the electron drift-diffusion model

被引:0
|
作者
Brizitskii, R. V. [1 ]
Maksimova, N. N. [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Far East Branch, Ul Radio 7, Vladivostok 690041, Russia
[2] Amur State Univ, Dept Math Anal & Modeling, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
[3] Amur State Univ, Lab Math Modeling Complex Phys & Biol Syst, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
关键词
optimality system; uniqueness of the optimal solution; electron drift-diffusion model; polar inhomogeneous dielectric charging model; control problem; local stability estimates; CHARGING PROCESSES; FERROELECTRICS; SIMULATION; HEAT; SEM;
D O I
10.35634/vm250102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The issues of uniqueness and stability of solutions to the control problems for the model of electron-induced charging of an inhomogeneous polar dielectric are studied. Sufficient conditions for the uniqueness and stability of optimal solutions to the considered extremum problems are established, and the local estimates of their stability with respect to small perturbations of the cost functionals are derived.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 50 条
  • [21] Uniqueness of Solutions of the Derrida-Lebowitz-Speer-Spohn Equation and Quantum Drift-Diffusion Models
    Fischer, Julian
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (11) : 2004 - 2047
  • [22] QUALITATIVE BEHAVIOR OF SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    JUNGEL, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (04): : 497 - 518
  • [23] Symmetry analysis and exact invariant solutions for the drift-diffusion model of semiconductors
    Romano, V
    Sellier, JM
    Torrisi, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 62 - 72
  • [24] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [25] Global solutions for a supercritical drift-diffusion equation
    Burczak, Jan
    Granero-Belinchon, Rafael
    ADVANCES IN MATHEMATICS, 2016, 295 : 334 - 367
  • [26] Bounded weak solutions to a matrix drift-diffusion model for spin-coherent electron transport in semiconductors
    Juengel, Ansgar
    Negulescu, Claudia
    Shpartko, Polina
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (05): : 929 - 958
  • [27] On the stationary quantum drift-diffusion model
    N. Ben Abdallah
    A. Unterreiter
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 251 - 275
  • [28] The bipolar quantum drift-diffusion model
    Xiu Qing Chen
    Li Chen
    Acta Mathematica Sinica, English Series, 2009, 25
  • [29] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazdi, Hadi Sadoghi
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007, 46 (11): : 7247 - 7250
  • [30] On the stationary quantum drift-diffusion model
    Ben Abdallah, N
    Unterreiter, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 251 - 275