On the uniqueness and stability of solutions to the control problems for the electron drift-diffusion model

被引:0
|
作者
Brizitskii, R. V. [1 ]
Maksimova, N. N. [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Far East Branch, Ul Radio 7, Vladivostok 690041, Russia
[2] Amur State Univ, Dept Math Anal & Modeling, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
[3] Amur State Univ, Lab Math Modeling Complex Phys & Biol Syst, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
关键词
optimality system; uniqueness of the optimal solution; electron drift-diffusion model; polar inhomogeneous dielectric charging model; control problem; local stability estimates; CHARGING PROCESSES; FERROELECTRICS; SIMULATION; HEAT; SEM;
D O I
10.35634/vm250102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The issues of uniqueness and stability of solutions to the control problems for the model of electron-induced charging of an inhomogeneous polar dielectric are studied. Sufficient conditions for the uniqueness and stability of optimal solutions to the considered extremum problems are established, and the local estimates of their stability with respect to small perturbations of the cost functionals are derived.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 50 条
  • [31] WEAK SOLUTIONS TO A HYDRODYNAMIC MODEL FOR SEMICONDUCTORS AND RELAXATION TO THE DRIFT-DIFFUSION EQUATION
    MARCATI, P
    NATALINI, R
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (02) : 129 - 145
  • [32] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazd, Hadi Sadoghi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (11): : 7247 - 7250
  • [33] The bipolar quantum drift-diffusion model
    Chen, Xiu Qing
    Chen, Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (04) : 617 - 638
  • [34] A decoupled algorithm for a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (11) : 1291 - 1313
  • [35] Asymptotic Behavior of Solutions of the Bipolar Quantum Drift-Diffusion Model in the Quarter Plane
    LIU fang
    LI Yeping
    Wuhan University Journal of Natural Sciences, 2019, 24 (06) : 467 - 473
  • [36] Classical solutions to the one-dimensional stationary quantum drift-diffusion model
    Dong, Jianwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (02) : 594 - 598
  • [37] Exact solutions for the drift-diffusion model of semiconductors via lie symmetry analysis
    Romano, V.
    Sellier, J. M.
    Torrisi, M.
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING, 2006, 9 : 383 - +
  • [38] An existence of stationary solutions for the Drift-Diffusion Semiconductor equations
    Guo, XL
    Xing, JS
    Ling, H
    DYNAMIC SYSTEMS AND APPLICATIONS, 2002, 11 (04): : 521 - 529
  • [39] An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes
    Degond, Pierre
    Gallego, Samy
    Mehats, Florian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 221 (01) : 226 - 249
  • [40] HOLDER CONTINUITY OF SOLUTIONS FOR A CLASS OF DRIFT-DIFFUSION EQUATIONS
    Nguyen, Quoc-Hung
    Sire, Yannick
    Truong, Le Xuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (3-4) : 1657 - 1685