pyStoNED: A Python']Python Package for Convex Regression and Frontier Estimation

被引:0
|
作者
Dai, Sheng [1 ]
Fang, Yu-Hsueh [2 ]
Lee, Chia-Yen [2 ]
Kuosmanen, Timo [3 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Econ, Wuhan 430073, Peoples R China
[2] Natl Taiwan Univ, Dept Informat Management, Taipei 106, Taiwan
[3] Univ Turku, Turku Sch Econ, Dept Econ, FI-20014 Turku, Finland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 111卷 / 06期
关键词
multivariate convex regression; nonparametric least squares; frontier estimation; efficiency analysis; stochastic noise; !text type='Python']Python[!/text; NONPARAMETRIC APPROACH; EFFICIENCY;
D O I
10.18637/jss.v111.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shape-constrained nonparametric regression is a growing area in econometrics, statistics, operations research, machine learning, and related fields. In the field of productivity and efficiency analysis, recent developments in multivariate convex regression and related techniques such as convex quantile regression and convex expectile regression have bridged the long-standing gap between the conventional deterministic-nonparametric and stochastic-parametric methods. Unfortunately, the heavy computational burden and the lack of a powerful, reliable, and fully open-access computational package have slowed down the diffusion of these advanced estimation techniques to the empirical practice. The purpose of the Python package pyStoNED is to address this challenge by providing a freely available and user-friendly tool for multivariate convex regression, convex quantile velopment of data, and related methods. This paper presents a tutorial of the pyStoNED package and illustrates its application, focusing on estimating frontier cost and production functions.
引用
收藏
页码:1 / 43
页数:43
相关论文
共 50 条
  • [31] The Multitaper Spectrum Analysis Package in Python']Python
    Prieto, German A.
    SEISMOLOGICAL RESEARCH LETTERS, 2022, 93 (03) : 1922 - 1929
  • [32] Analysing the resilience of agricultural production systems with ResiPy, the Python']Python production resilience estimation package
    Zampieri, Matteo
    Toreti, Andrea
    Ceglar, Andrej
    De Palma, Pierluca
    Chatzopoulos, Thomas
    Michetti, Melania
    SOFTWAREX, 2021, 15 (15)
  • [33] TextCL: A Python']Python package for NLP preprocessing tasks
    Petukhova, Alina
    Fachada, Nuno
    SOFTWAREX, 2022, 19
  • [34] pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Eismann, Michael T.
    LONG-RANGE IMAGING II, 2017, 10204
  • [35] TreeSwift: A massively scalable Python']Python tree package
    Moshiri, N.
    SOFTWAREX, 2020, 11
  • [36] CausalBO: A Python']Python Package for Causal Bayesian Optimization
    Roberts, Jeremy
    Javidian, Mohammad Ali
    SOUTHEASTCON 2024, 2024, : 1370 - 1375
  • [37] dingo: a Python']Python package for metabolic flux sampling
    Chalkis, Apostolos
    Fisikopoulos, Vissarion
    Tsigaridas, Elias
    Zafeiropoulos, Haris
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [38] pyMune: A Python']Python package for complex clusters detection
    Abbas, Mohamed Ali
    El-Zoghabi, Adel
    Shoukry, Amin
    SOFTWARE IMPACTS, 2023, 17
  • [39] A Python']Python upgrade to the GooFit package for parallel fitting
    Schreiner, Henry
    Pandey, Himadri
    Sokoloff, Michael D.
    Hittle, Bradley
    Tomko, Karen
    Hasse, Christoph
    23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [40] ADOpy: a python']python package for adaptive design optimization
    Yang, Jaeyeong
    Pitt, Mark A.
    Ahn, Woo-Young
    Myung, Jay I.
    BEHAVIOR RESEARCH METHODS, 2021, 53 (02) : 874 - 897