pyStoNED: A Python']Python Package for Convex Regression and Frontier Estimation

被引:0
|
作者
Dai, Sheng [1 ]
Fang, Yu-Hsueh [2 ]
Lee, Chia-Yen [2 ]
Kuosmanen, Timo [3 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Econ, Wuhan 430073, Peoples R China
[2] Natl Taiwan Univ, Dept Informat Management, Taipei 106, Taiwan
[3] Univ Turku, Turku Sch Econ, Dept Econ, FI-20014 Turku, Finland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 111卷 / 06期
关键词
multivariate convex regression; nonparametric least squares; frontier estimation; efficiency analysis; stochastic noise; !text type='Python']Python[!/text; NONPARAMETRIC APPROACH; EFFICIENCY;
D O I
10.18637/jss.v111.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shape-constrained nonparametric regression is a growing area in econometrics, statistics, operations research, machine learning, and related fields. In the field of productivity and efficiency analysis, recent developments in multivariate convex regression and related techniques such as convex quantile regression and convex expectile regression have bridged the long-standing gap between the conventional deterministic-nonparametric and stochastic-parametric methods. Unfortunately, the heavy computational burden and the lack of a powerful, reliable, and fully open-access computational package have slowed down the diffusion of these advanced estimation techniques to the empirical practice. The purpose of the Python package pyStoNED is to address this challenge by providing a freely available and user-friendly tool for multivariate convex regression, convex quantile velopment of data, and related methods. This paper presents a tutorial of the pyStoNED package and illustrates its application, focusing on estimating frontier cost and production functions.
引用
收藏
页码:1 / 43
页数:43
相关论文
共 50 条
  • [21] PyKernelLogit: Penalised maximum likelihood estimation of Kernel Logistic Regression in Python']Python
    Martin-Baos, Jose angel
    Garcia-Rodenas, Ricardo
    Garcia, Maria Luz Lopez
    Rodriguez-Benitez, Luis
    SOFTWARE IMPACTS, 2024, 19
  • [22] MeDIL: A Python']Python Package for Causal Modelling
    Markham, Alex
    Chivukula, Aditya
    Grosse-Wentrup, Moritz
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 621 - 624
  • [23] Astropy: A community Python']Python package for astronomy
    Robitaille, Thomas P.
    Tollerud, Erik J.
    Greenfield, Perry
    Droettboom, Michael
    Bray, Erik
    Aldcroft, Tom
    Davis, Matt
    Ginsburg, Adam
    Price-Whelan, Adrian M.
    Kerzendorf, Wolfgang E.
    Conley, Alexander
    Crighton, Neil
    Barbary, Kyle
    Muna, Demitri
    Ferguson, Henry
    Grollier, Frederic
    Parikh, Madhura M.
    Nair, Prasanth H.
    Guenther, Hans M.
    Deil, Christoph
    Woillez, Julien
    Conseil, Simon
    Kramer, Roban
    Turner, James E. H.
    Singer, Leo
    Fox, Ryan
    Weaver, Benjamin A.
    Zabalza, Victor
    Edwards, Zachary I.
    Bostroem, K. Azalee
    Burke, D. J.
    Casey, Andrew R.
    Crawford, Steven M.
    Dencheva, Nadia
    Ely, Justin
    Jenness, Tim
    Labrie, Kathleen
    Lim, Pey Lian
    Pierfederici, Francesco
    Pontzen, Andrew
    Ptak, Andy
    Refsdal, Brian
    Servillat, Mathieu
    Streicher, Ole
    ASTRONOMY & ASTROPHYSICS, 2013, 558
  • [24] celmech: A Python']Python Package for Celestial Mechanics
    Hadden, Sam
    Tamayo, Daniel
    ASTRONOMICAL JOURNAL, 2022, 164 (05):
  • [25] PYCHEM: a multivariate analysis package for python']python
    Jarvis, Roger M.
    Broadhurst, David
    Johnson, Helen
    O'Boyle, Noel M.
    Goodacre, Royston
    BIOINFORMATICS, 2006, 22 (20) : 2565 - 2566
  • [26] scqubits: a Python']Python package for superconducting qubits
    Groszkowski, Peter
    Koch, Jens
    QUANTUM, 2021, 5
  • [27] CosmoFlow: Python']Python package for cosmological correlators
    Werth, Denis
    Pinol, Lucas
    Renaux-Petel, Sebastien
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (17)
  • [28] WavePy: A Python']Python Package for Wave Optics
    Beck, Jeffrey
    Bekins, Celina
    Bos, Jeremy P.
    LONG-RANGE IMAGING, 2016, 9846
  • [29] matplotlib - A portable python']python plotting package
    Barrett, P
    Hunter, J
    Miller, JT
    Hsu, JC
    Greenfield, P
    Astronomical Data Analysis Software and Systems XIV, Proceedings, 2005, 347 : 91 - 95
  • [30] TDCRPy: A python']python package for TDCR measurements
    Coulon, Romain
    Hu, Jialin
    APPLIED RADIATION AND ISOTOPES, 2024, 214