A Transformer Network Combing CBAM for Low-Light Image Enhancement

被引:0
|
作者
Sun, Zhefeng [1 ]
Wang, Chen [1 ]
机构
[1] Ctr Informat Natl Med Prod Adm, Beijing 100076, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 03期
关键词
Low-light image enhancement; CBAM; transformer;
D O I
10.32604/cmc.2025.059669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, a multitude of techniques that fuse deep learning with Retinex theory have been utilized in the field of low-light image enhancement, yielding remarkable outcomes. Due to the intricate nature of imaging scenarios, including fluctuating noise levels and unpredictable environmental elements, these techniques do not fully resolve these challenges. We introduce an innovative strategy that builds upon Retinex theory and integrates a novel deep network architecture, merging the Convolutional Block Attention Module (CBAM) with the Transformer. Our model is capable of detecting more prominent features across both channel and spatial domains. We have conducted extensive experiments across several datasets, namely LOLv1, LOLv2-real, and LOLv2-sync. The results show that our approach surpasses other methods when evaluated against critical metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Moreover, we have visually assessed images enhanced by various techniques and utilized visual metrics like LPIPS for comparison, and the experimental data clearly demonstrate that our approach excels visually over other methods as well.
引用
收藏
页码:5205 / 5220
页数:16
相关论文
共 50 条
  • [41] Channel splitting attention network for low-light image enhancement
    Lu, Bibo
    Pang, Zebang
    Gu, Yanan
    Zheng, Yanmei
    IET IMAGE PROCESSING, 2022, 16 (05) : 1403 - 1414
  • [42] Deep Color Consistent Network for Low-Light Image Enhancement
    Zhang, Zhao
    Zheng, Huan
    Hong, Richang
    Xu, Mingliang
    Yan, Shuicheng
    Wang, Meng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1889 - 1898
  • [43] ATTENTION-BASED NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Zhang, Cheng
    Yan, Qingsen
    Zhu, Yu
    Li, Xianjun
    Sun, Jinqiu
    Zhang, Yanning
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [44] FRN: Fusion and recalibration network for low-light image enhancement
    Kavinder Singh
    Ashutosh Pandey
    Akshat Agarwal
    Mohit Kumar Agarwal
    Aditya Shankar
    Anil Singh Parihar
    Multimedia Tools and Applications, 2024, 83 : 12235 - 12252
  • [45] LLCNN: A Convolutional Neural Network for Low-light Image Enhancement
    Tao, Li
    Zhu, Chuang
    Xiang, Guoqing
    Li, Yuan
    Jia, Huizhu
    Xie, Xiaodong
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [46] INTEGRATION-AND-DIFFUSION NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Tang, Pengliang
    Guo, Xiaoqiang
    Ju, Guodong
    Shen, Liangheng
    Men, Aidong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1664 - 1668
  • [47] Low-Light Image Enhancement Network Guided by Illuminance Map
    Huang S.
    Li W.
    Yang Y.
    Wan W.
    Lai H.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (01): : 92 - 101
  • [48] Low-Light Image Enhancement Based on Generative Adversarial Network
    Abirami, R. Nandhini
    Vincent, P. M. Durai Raj
    FRONTIERS IN GENETICS, 2021, 12
  • [49] Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement
    Jiang, Qiuping
    Mao, Yudong
    Cong, Runmin
    Ren, Wenqi
    Huang, Chao
    Shao, Feng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19440 - 19455
  • [50] Multiscale Low-Light Image Enhancement Network With Illumination Constraint
    Fan, Guo-Dong
    Fan, Bi
    Gan, Min
    Chen, Guang-Yong
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7403 - 7417