A Transformer Network Combing CBAM for Low-Light Image Enhancement

被引:0
|
作者
Sun, Zhefeng [1 ]
Wang, Chen [1 ]
机构
[1] Ctr Informat Natl Med Prod Adm, Beijing 100076, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 03期
关键词
Low-light image enhancement; CBAM; transformer;
D O I
10.32604/cmc.2025.059669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, a multitude of techniques that fuse deep learning with Retinex theory have been utilized in the field of low-light image enhancement, yielding remarkable outcomes. Due to the intricate nature of imaging scenarios, including fluctuating noise levels and unpredictable environmental elements, these techniques do not fully resolve these challenges. We introduce an innovative strategy that builds upon Retinex theory and integrates a novel deep network architecture, merging the Convolutional Block Attention Module (CBAM) with the Transformer. Our model is capable of detecting more prominent features across both channel and spatial domains. We have conducted extensive experiments across several datasets, namely LOLv1, LOLv2-real, and LOLv2-sync. The results show that our approach surpasses other methods when evaluated against critical metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Moreover, we have visually assessed images enhanced by various techniques and utilized visual metrics like LPIPS for comparison, and the experimental data clearly demonstrate that our approach excels visually over other methods as well.
引用
收藏
页码:5205 / 5220
页数:16
相关论文
共 50 条
  • [31] Deep Pyramid Network for Low-Light Endoscopic Image Enhancement
    Yue, Guanghui
    Gao, Jie
    Cong, Runmin
    Zhou, Tianwei
    Li, Leida
    Wang, Tianfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3834 - 3845
  • [32] Low-Light Image Enhancement via a Deep Hybrid Network
    Ren, Wenqi
    Liu, Sifei
    Ma, Lin
    Xu, Qianqian
    Xu, Xiangyu
    Cao, Xiaochun
    Du, Junping
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4364 - 4375
  • [33] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [34] Frequency-aware network for low-light image enhancement
    Shang, Kai
    Shao, Mingwen
    Qiao, Yuanjian
    Liu, Huan
    COMPUTERS & GRAPHICS-UK, 2024, 118 : 210 - 219
  • [35] Adversarial Context Aggregation Network for Low-Light Image Enhancement
    Shin, Yong-Goo
    Sagong, Min-Cheol
    Yeo, Yoon-Jae
    Ko, Sung-Jea
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 617 - 621
  • [36] A deep Retinex network for underwater low-light image enhancement
    Kai Ji
    Weimin Lei
    Wei Zhang
    Machine Vision and Applications, 2023, 34
  • [37] RECURRENT ATTENTIVE DECOMPOSITION NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Gao, Haoyu
    Zhang, Lin
    Zhang, Shunli
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3818 - 3822
  • [38] Low-Light Image Enhancement Using a Simple Network Structure
    Matsui, Takuro
    Ikehara, Masaaki
    IEEE ACCESS, 2023, 11 : 65507 - 65516
  • [39] Feature spatial pyramid network for low-light image enhancement
    Song, Xijuan
    Huang, Jijiang
    Cao, Jianzhong
    Song, Dawei
    VISUAL COMPUTER, 2023, 39 (01): : 489 - 499
  • [40] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259