A Transformer Network Combing CBAM for Low-Light Image Enhancement

被引:0
|
作者
Sun, Zhefeng [1 ]
Wang, Chen [1 ]
机构
[1] Ctr Informat Natl Med Prod Adm, Beijing 100076, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 03期
关键词
Low-light image enhancement; CBAM; transformer;
D O I
10.32604/cmc.2025.059669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, a multitude of techniques that fuse deep learning with Retinex theory have been utilized in the field of low-light image enhancement, yielding remarkable outcomes. Due to the intricate nature of imaging scenarios, including fluctuating noise levels and unpredictable environmental elements, these techniques do not fully resolve these challenges. We introduce an innovative strategy that builds upon Retinex theory and integrates a novel deep network architecture, merging the Convolutional Block Attention Module (CBAM) with the Transformer. Our model is capable of detecting more prominent features across both channel and spatial domains. We have conducted extensive experiments across several datasets, namely LOLv1, LOLv2-real, and LOLv2-sync. The results show that our approach surpasses other methods when evaluated against critical metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Moreover, we have visually assessed images enhanced by various techniques and utilized visual metrics like LPIPS for comparison, and the experimental data clearly demonstrate that our approach excels visually over other methods as well.
引用
收藏
页码:5205 / 5220
页数:16
相关论文
共 50 条
  • [21] A Pipeline Neural Network for Low-Light Image Enhancement
    Guo, Yanhui
    Ke, Xue
    Ma, Jie
    Zhang, Jun
    IEEE ACCESS, 2019, 7 : 13737 - 13744
  • [22] Weight Uncertainty Network for Low-Light Image Enhancement
    Jin, Yutao
    Sun, Yue
    Chen, Xiaoyan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VIII, ICIC 2024, 2024, 14869 : 106 - 117
  • [23] Exposure difference network for low-light image enhancement
    Jiang, Shengqin
    Mei, Yongyue
    Wang, Peng
    Liu, Qingshan
    PATTERN RECOGNITION, 2024, 156
  • [24] Hierarchical guided network for low-light image enhancement
    Feng, Xiaomei
    Li, Jinjiang
    Fan, Hui
    IET IMAGE PROCESSING, 2021, 15 (13) : 3254 - 3266
  • [25] Deep Lightening Network for Low-light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel Pak-Kong
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [26] Invertible network for unpaired low-light image enhancement
    Zhang, Jize
    Wang, Haolin
    Wu, Xiaohe
    Zuo, Wangmeng
    VISUAL COMPUTER, 2024, 40 (01): : 109 - 120
  • [27] Transformer-Based Multi-scale Optimization Network for Low-Light Image Enhancement
    Niu Y.
    Lin X.
    Xu H.
    Li Y.
    Chen Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (06): : 511 - 529
  • [28] RawFormer: An Efficient Vision Transformer for Low-Light RAW Image Enhancement
    Xu, Wanyan
    Dong, Xingbo
    Ma, Lan
    Teoh, Andrew Beng Jin
    Lin, Zhixian
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2677 - 2681
  • [29] DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement
    Jiang, Yonglong
    Li, Liangliang
    Zhu, Jiahe
    Xue, Yuan
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (04): : 743 - 753
  • [30] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)