Bayesian hierarchical hypothesis testing in large-scale genome-wide association analysis

被引:0
|
作者
Samaddar, Anirban [1 ]
Maiti, Tapabrata [1 ]
de los Campos, Gustavo [1 ,2 ,3 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Epidemiol & Biostat, E Lansing, MI 48824 USA
[3] Michigan State Univ, Inst Quantitat Hlth Sci & Engn, E Lansing, MI 48824 USA
关键词
Bayesian variable selection; Bayesian hierarchical hypothesis testing; false discovery rate; GWAS; collinearity; multiresolution inference; spike and slab prior; linkage disequilibrium; UK-Biobank data; FALSE DISCOVERY RATE; VARIABLE-SELECTION; REGRESSION; HERITABILITY; PREDICTION;
D O I
10.1093/genetics/iyae164
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Variable selection and large-scale hypothesis testing are techniques commonly used to analyze high-dimensional genomic data. Despite recent advances in theory and methodology, variable selection and inference with highly collinear features remain challenging. For instance, collinearity poses a great challenge in genome-wide association studies involving millions of variants, many of which may be in high linkage disequilibrium. In such settings, collinearity can significantly reduce the power of variable selection methods to identify individual variants associated with an outcome. To address such challenges, we developed a Bayesian hierarchical hypothesis testing (BHHT)-a novel multiresolution testing procedure that offers high power with adequate error control and fine-mapping resolution. We demonstrate through simulations that the proposed methodology has a power-FDR performance that is competitive with (and in many scenarios better than) state-of-the-art methods. Finally, we demonstrate the feasibility of using BHHT with large sample size ( n similar to 300,000) and ultra dimensional genotypes (similar to 15 million single-nucleotide polymorphisms or SNPs) by applying it to eight complex traits using data from the UK-Biobank. Our results show that the proposed methodology leads to many more discoveries than those obtained using traditional SNP-centered inference procedures. The article is accompanied by open-source software that implements the methods described in this study using algorithms that scale to biobank-size ultra-high-dimensional data.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A large-scale genome-wide association and meta-analysis identified four novel susceptibility loci for leprosy
    Wang, Zhenzhen
    Sun, Yonghu
    Fu, Xi'an
    Yu, Gongqi
    Wang, Chuan
    Bao, Fangfang
    Yue, Zhenhua
    Li, Jianke
    Sun, Lele
    Irwanto, Astrid
    Yu, Yongxiang
    Chen, Mingfei
    Mi, Zihao
    Wang, Honglei
    Huai, Pengcheng
    Li, Yi
    Du, Tiantian
    Yu, Wenjun
    Xia, Yang
    Xiao, Hailu
    You, Jiabao
    Li, Jinghui
    Yang, Qing
    Wang, Na
    Shang, Panpan
    Niu, Guiye
    Chi, Xiaojun
    Wang, Xiuhuan
    Cao, Jing
    Cheng, Xiujun
    Liu, Hong
    Liu, Jianjun
    Zhang, Furen
    NATURE COMMUNICATIONS, 2016, 7
  • [32] A large-scale genome-wide association and meta-analysis identified four novel susceptibility loci for leprosy
    Zhenzhen Wang
    Yonghu Sun
    Xi’an Fu
    Gongqi Yu
    Chuan Wang
    Fangfang Bao
    Zhenhua Yue
    Jianke Li
    Lele Sun
    Astrid Irwanto
    Yongxiang Yu
    Mingfei Chen
    Zihao Mi
    Honglei Wang
    Pengcheng Huai
    Yi Li
    Tiantian Du
    Wenjun Yu
    Yang Xia
    Hailu Xiao
    Jiabao You
    Jinghui Li
    Qing Yang
    Na Wang
    Panpan Shang
    Guiye Niu
    Xiaojun Chi
    Xiuhuan Wang
    Jing Cao
    Xiujun Cheng
    Hong Liu
    Jianjun Liu
    Furen Zhang
    Nature Communications, 7
  • [33] Analysis of the brain transcriptome for substance-associated genes: An update on large-scale genome-wide association studies
    Zhao, Yihong
    Han, Xuewei
    Zheng, Zhi-Liang
    ADDICTION BIOLOGY, 2023, 28 (10)
  • [34] A Bayesian hierarchical gene model on latent genotypes for genome-wide association studies
    Ian Johnston
    Luis E Carvalho
    BMC Proceedings, 8 (Suppl 1)
  • [35] Large-scale genome-wide association study of coronary artery disease in genetically diverse populations
    Tcheandjieu, Catherine
    Zhu, Xiang
    Hilliard, Austin T.
    Clarke, Shoa L.
    Napolioni, Valerio
    Ma, Shining
    Lee, Kyung Min
    Fang, Huaying
    Chen, Fei
    Lu, Yingchang
    Tsao, Noah L.
    Raghavan, Sridharan
    Koyama, Satoshi
    Gorman, Bryan R.
    Vujkovic, Marijana
    Klarin, Derek
    Levin, Michael G.
    Sinnott-Armstrong, Nasa
    Wojcik, Genevieve L.
    Plomondon, Mary E.
    Maddox, Thomas M.
    Waldo, Stephen W.
    Bick, Alexander G.
    Pyarajan, Saiju
    Huang, Jie
    Song, Rebecca
    Ho, Yuk-Lam
    Buyske, Steven
    Kooperberg, Charles
    Haessler, Jeffrey
    Loos, Ruth J. F.
    Do, Ron
    Verbanck, Marie
    Chaudhary, Kumardeep
    North, Kari E.
    Avery, Christy L.
    Graff, Mariaelisa
    Haiman, Christopher A.
    Le Marchand, Loic
    Wilkens, Lynne R.
    Bis, Joshua C.
    Leonard, Hampton
    Shen, Botong
    Lange, Leslie A.
    Giri, Ayush
    Dikilitas, Ozan
    Kullo, Iftikhar J.
    Stanaway, Ian B.
    Jarvik, Gail P.
    Gordon, Adam S.
    NATURE MEDICINE, 2022, 28 (08) : 1679 - +
  • [36] Insights into the Genetic Underpinnings of Endocrine Traits from Large-Scale Genome-Wide Association Studies
    Cousminer, Diana L.
    Grant, Struan F. A.
    ENDOCRINOLOGY AND METABOLISM CLINICS OF NORTH AMERICA, 2020, 49 (04) : 725 - +
  • [37] Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study
    de Vries, Paul S.
    Sabater-Lleal, Maria
    Chasman, Daniel I.
    Trompet, Stella
    Ahluwalia, Tarunveer S.
    Teumer, Alexander
    Kleber, Marcus E.
    Chen, Ming-Huei
    Wang, Jie Jin
    Attia, John R.
    Marioni, Riccardo E.
    Steri, Maristella
    Weng, Lu-Chen
    Pool, Rene
    Grossmann, Vera
    Brody, Jennifer A.
    Venturini, Cristina
    Tanaka, Toshiko
    Rose, Lynda M.
    Oldmeadow, Christopher
    Mazur, Johanna
    Basu, Saonli
    Franberg, Mattias
    Yang, Qiong
    Ligthart, Symen
    Hottenga, Jouke J.
    Rumley, Ann
    Mulas, Antonella
    de Craen, Anton J. M.
    Grotevendt, Anne
    Taylor, Kent D.
    Delgado, Graciela E.
    Kifley, Annette
    Lopez, Lorna M.
    Berentzen, Tina L.
    Mangino, Massimo
    Bandinelli, Stefania
    Morrison, Alanna C.
    Hamsten, Anders
    Tofler, Geoffrey
    de Maat, Moniek P. M.
    Draisma, Harmen H. M.
    Lowe, Gordon D.
    Zoledziewska, Magdalena
    Sattar, Naveed
    Lackner, Karl J.
    Voelker, Uwe
    McKnight, Barbara
    Huang, Jie
    Holliday, Elizabeth G.
    PLOS ONE, 2017, 12 (01):
  • [38] Large-Scale Privacy-Preserving Statistical Computations for Distributed Genome-Wide Association Studies
    Tkachenko, Oleksandr
    Weinert, Christian
    Schneider, Thomas
    Hamacher, Kay
    PROCEEDINGS OF THE 2018 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIACCS'18), 2018, : 221 - 235
  • [39] Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci
    Han, Xikun
    Gharahkhani, Puya
    Hamel, Andrew R.
    Ong, Jue Sheng
    Renteria, Miguel E.
    Mehta, Puja
    Dong, Xianjun
    Pasutto, Francesca
    Hammond, Christopher
    Young, Terri L.
    Hysi, Pirro
    Lotery, Andrew J.
    Jorgenson, Eric
    Choquet, Helene
    Hauser, Michael
    Bailey, Jessica Cooke N.
    Nakazawa, Toru
    Akiyama, Masato
    Shiga, Yukihiro
    Fuller, Zachary L.
    Wang, Xin
    Hewitt, Alex W.
    Craig, Jamie E.
    Pasquale, Louis R.
    Mackey, David A.
    Wiggs, Janey L.
    Khawaja, Anthony P.
    Segre, Ayellet, V
    MacGregor, Stuart
    NATURE GENETICS, 2023, 55 (07) : 1116 - +
  • [40] Large-scale genome-wide association study of coronary artery disease in genetically diverse populations
    Catherine Tcheandjieu
    Xiang Zhu
    Austin T. Hilliard
    Shoa L. Clarke
    Valerio Napolioni
    Shining Ma
    Kyung Min Lee
    Huaying Fang
    Fei Chen
    Yingchang Lu
    Noah L. Tsao
    Sridharan Raghavan
    Satoshi Koyama
    Bryan R. Gorman
    Marijana Vujkovic
    Derek Klarin
    Michael G. Levin
    Nasa Sinnott-Armstrong
    Genevieve L. Wojcik
    Mary E. Plomondon
    Thomas M. Maddox
    Stephen W. Waldo
    Alexander G. Bick
    Saiju Pyarajan
    Jie Huang
    Rebecca Song
    Yuk-Lam Ho
    Steven Buyske
    Charles Kooperberg
    Jeffrey Haessler
    Ruth J. F. Loos
    Ron Do
    Marie Verbanck
    Kumardeep Chaudhary
    Kari E. North
    Christy L. Avery
    Mariaelisa Graff
    Christopher A. Haiman
    Loïc Le Marchand
    Lynne R. Wilkens
    Joshua C. Bis
    Hampton Leonard
    Botong Shen
    Leslie A. Lange
    Ayush Giri
    Ozan Dikilitas
    Iftikhar J. Kullo
    Ian B. Stanaway
    Gail P. Jarvik
    Adam S. Gordon
    Nature Medicine, 2022, 28 : 1679 - 1692