Bayesian hierarchical hypothesis testing in large-scale genome-wide association analysis

被引:0
|
作者
Samaddar, Anirban [1 ]
Maiti, Tapabrata [1 ]
de los Campos, Gustavo [1 ,2 ,3 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Epidemiol & Biostat, E Lansing, MI 48824 USA
[3] Michigan State Univ, Inst Quantitat Hlth Sci & Engn, E Lansing, MI 48824 USA
关键词
Bayesian variable selection; Bayesian hierarchical hypothesis testing; false discovery rate; GWAS; collinearity; multiresolution inference; spike and slab prior; linkage disequilibrium; UK-Biobank data; FALSE DISCOVERY RATE; VARIABLE-SELECTION; REGRESSION; HERITABILITY; PREDICTION;
D O I
10.1093/genetics/iyae164
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Variable selection and large-scale hypothesis testing are techniques commonly used to analyze high-dimensional genomic data. Despite recent advances in theory and methodology, variable selection and inference with highly collinear features remain challenging. For instance, collinearity poses a great challenge in genome-wide association studies involving millions of variants, many of which may be in high linkage disequilibrium. In such settings, collinearity can significantly reduce the power of variable selection methods to identify individual variants associated with an outcome. To address such challenges, we developed a Bayesian hierarchical hypothesis testing (BHHT)-a novel multiresolution testing procedure that offers high power with adequate error control and fine-mapping resolution. We demonstrate through simulations that the proposed methodology has a power-FDR performance that is competitive with (and in many scenarios better than) state-of-the-art methods. Finally, we demonstrate the feasibility of using BHHT with large sample size ( n similar to 300,000) and ultra dimensional genotypes (similar to 15 million single-nucleotide polymorphisms or SNPs) by applying it to eight complex traits using data from the UK-Biobank. Our results show that the proposed methodology leads to many more discoveries than those obtained using traditional SNP-centered inference procedures. The article is accompanied by open-source software that implements the methods described in this study using algorithms that scale to biobank-size ultra-high-dimensional data.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Structured Genome-Wide Association Studies with Bayesian Hierarchical Variable Selection
    Zhao, Yize
    Zhu, Hongtu
    Lu, Zhaohua
    Knickmeyer, Rebecca C.
    Zou, Fei
    GENETICS, 2019, 212 (02) : 397 - 415
  • [22] LARGE-SCALE MULTI-ANCESTRY GENOME-WIDE ASSOCIATION META-ANALYSIS OF MAJOR DEPRESSION
    Meng, Xiangrui
    Giannakopoulou, Olga
    Navoly, Georgina
    Koller, Dora
    Levey, Daniel
    Koen, Nastassja
    Loos, Ruth J. F.
    Davis, Lea
    Martin, Nick
    Walters, Robin
    Polimanti, Renato
    Stein, Murray
    Gelernter, Joel
    Kuchenbaecker, Karoline
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2022, 63 : E49 - E49
  • [23] Efficient and accurate frailty model approach for genome-wide survival association analysis in large-scale biobanks
    Rounak Dey
    Wei Zhou
    Tuomo Kiiskinen
    Aki Havulinna
    Amanda Elliott
    Juha Karjalainen
    Mitja Kurki
    Ashley Qin
    Seunggeun Lee
    Aarno Palotie
    Benjamin Neale
    Mark Daly
    Xihong Lin
    Nature Communications, 13
  • [24] Efficient and accurate frailty model approach for genome-wide survival association analysis in large-scale biobanks
    Dey, Rounak
    Zhou, Wei
    Kiiskinen, Tuomo
    Havulinna, Aki
    Elliott, Amanda
    Karjalainen, Juha
    Kurki, Mitja
    Qin, Ashley
    Lee, Seunggeun
    Palotie, Aarno
    Neale, Benjamin
    Daly, Mark
    Lin, Xihong
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [25] Genome-wide hierarchical mixed model association analysis
    Hao, Zhiyu
    Gao, Jin
    Song, Yuxin
    Yang, Runqing
    Liu, Di
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [26] Large-scale multiple testing in genome-wide association studies via region-specific hidden Markov models
    Xiao, Jian
    Zhu, Wensheng
    Guo, Jianhua
    BMC BIOINFORMATICS, 2013, 14
  • [27] Bifidobacteriaceae diversity in the human microbiome from a large-scale genome-wide analysis
    Pasolli, Edoardo
    Mauriello, Italia Elisa
    Avagliano, Michele
    Cavaliere, Sara
    De Filippis, Francesca
    Ercolini, Danilo
    CELL REPORTS, 2024, 43 (12):
  • [28] Large-scale multiple testing in genome-wide association studies via region-specific hidden Markov models
    Jian Xiao
    Wensheng Zhu
    Jianhua Guo
    BMC Bioinformatics, 14
  • [29] Large-scale Meta-analysis of Genome-wide Association (GWA) Scans for Osteoporosis Traits: the GEFOS Consortium
    Rivadeneira, F.
    Kavvoura, F.
    Karasik, D.
    Richards, B.
    Halldorsson, B.
    Hsu, Y.
    Demissie, S.
    Cupples, A.
    Zillikens, C.
    van Duijn, C.
    Estrada, K.
    van Meurs, J.
    Pols, H.
    Thorsteinsdottir, U.
    Brown, M.
    Spector, T.
    Ralston, S.
    Kiel, D.
    Ioannidis, J.
    Styrkarsdottir, U.
    Uitterlinden, A.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2008, 23 : S27 - S27
  • [30] Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis
    Gharahkhani, Puya
    Fitzgerald, Rebecca C.
    Vaughan, Thomas L.
    Palles, Claire
    Gockel, Ines
    Tomlinson, Ian
    Buas, Matthew F.
    May, Andrea
    Gerges, Christian
    Anders, Mario
    Becker, Jessica
    Kreuser, Nicole
    Noder, Tania
    Venerito, Marino
    Veits, Lothar
    Schmidt, Thomas
    Manner, Hendrik
    Schmidt, Claudia
    Hess, Timo
    Boehmer, Anne C.
    Izbicki, Jakob R.
    Hoelscher, Arnulf H.
    Lang, Hauke
    Lorenz, Dietmar
    Schumacher, Brigitte
    Hackelsberger, Andreas
    Mayershofer, Rupert
    Pech, Oliver
    Vashist, Yogesh
    Ott, Katja
    Vieth, Michael
    Weismueller, Josef
    Noethen, Markus M.
    Attwood, Stephen
    Barr, Hugh
    Chegwidden, Laura
    de Caestecker, John
    Harrison, Rebecca
    Love, Sharon B.
    MacDonald, David
    Moayyedi, Paul
    Prenen, Hans
    Watson, R. G. Peter
    Iyer, Prasad G.
    Anderson, Lesley A.
    Bernstein, Leslie
    Chow, Wong-Ho
    Hardie, Laura J.
    Lagergren, Jesper
    Liu, Geoffrey
    LANCET ONCOLOGY, 2016, 17 (10): : 1363 - 1373