Capturing cell-type-specific activities of cis-regulatory elements from peak-based single-cell ATAC-seq

被引:0
|
作者
Chen, Mengjie [1 ,2 ,3 ]
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
来源
CELL GENOMICS | 2025年 / 5卷 / 03期
基金
美国国家卫生研究院;
关键词
ACCESSIBILITY;
D O I
10.1016/j.xgen.2025.100806
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Single-cell ATAC sequencing (scATAC-seq), a state-of-the-art genomic technique designed to map chromatin accessibility at the single-cell level, presents unique analytical challenges due to limited sampling and data sparsity. In this study, we use case studies to highlight the limitations of conventional peak-based methods for processing scATAC-seq data. These methods can fail to capture precise cell-type-specific regulatory signals, producing results that are difficult to interpret and lack portability, thereby compromising the reproducibility of research findings. To overcome these issues, we introduce CREscendo, a method that utilizes Tn5 cleavage frequencies and regulatory annotations to identify differential usage of candidate regulatory elements (CREs) across cell types. Our research advocates for moving away from traditional peak-based quantification in scATAC-seq toward a more robust framework that relies on a standardized reference of annotated CREs, enhancing both the accuracy and reproducibility of genomic studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Gonzalez-Blas, Carmen Bravo
    Minnoye, Liesbeth
    Papasokrati, Dafni
    Aibar, Sara
    Hulselmans, Gert
    Christiaens, Valerie
    Davie, Kristofer
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2019, 16 (05) : 397 - +
  • [2] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Carmen Bravo González-Blas
    Liesbeth Minnoye
    Dafni Papasokrati
    Sara Aibar
    Gert Hulselmans
    Valerie Christiaens
    Kristofer Davie
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2019, 16 : 397 - 400
  • [3] Single-cell analysis of cis-regulatory elements
    Marand, Alexandre P.
    Schmitz, Robert J.
    CURRENT OPINION IN PLANT BIOLOGY, 2022, 65
  • [4] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [5] Benchmarking automated cell type annotation tools for single-cell ATAC-seq data
    Wang, Yuge
    Sun, Xingzhi
    Zhao, Hongyu
    FRONTIERS IN GENETICS, 2022, 13
  • [6] Modeling Single-Cell ATAC-Seq Data Based on Contrastive Learning
    Lan, Wei
    Zhou, Weihao
    Chen, Qingfeng
    Zheng, Ruiqing
    Pan, Yi
    Chen, Yi-Ping Phoebe
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 473 - 482
  • [7] Characterizing cis-regulatory elements using single-cell epigenomics
    Sebastian Preissl
    Kyle J. Gaulton
    Bing Ren
    Nature Reviews Genetics, 2023, 24 : 21 - 43
  • [8] Characterizing cis-regulatory elements using single-cell epigenomics
    Preissl, Sebastian
    Gaulton, Kyle J.
    Ren, Bing
    NATURE REVIEWS GENETICS, 2023, 24 (01) : 21 - 43
  • [9] Inferring transcription factor regulatory networks from single-cell ATAC-seq data based on graph neural networks
    Hao Li
    Yu Sun
    Hao Hong
    Xin Huang
    Huan Tao
    Qiya Huang
    Longteng Wang
    Kang Xu
    Jingbo Gan
    Hebing Chen
    Xiaochen Bo
    Nature Machine Intelligence, 2022, 4 : 389 - 400
  • [10] Discovering single nucleotide variants and indels from bulk and single-cell ATAC-seq
    Massarat, Arya R.
    Sen, Arko
    Jaureguy, Jeff
    Tyndale, Selene T.
    Fu, Yi
    Erikson, Galina
    McVicker, Graham
    NUCLEIC ACIDS RESEARCH, 2021, 49 (14) : 7986 - 7994