Capturing cell-type-specific activities of cis-regulatory elements from peak-based single-cell ATAC-seq

被引:0
|
作者
Chen, Mengjie [1 ,2 ,3 ]
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
来源
CELL GENOMICS | 2025年 / 5卷 / 03期
基金
美国国家卫生研究院;
关键词
ACCESSIBILITY;
D O I
10.1016/j.xgen.2025.100806
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Single-cell ATAC sequencing (scATAC-seq), a state-of-the-art genomic technique designed to map chromatin accessibility at the single-cell level, presents unique analytical challenges due to limited sampling and data sparsity. In this study, we use case studies to highlight the limitations of conventional peak-based methods for processing scATAC-seq data. These methods can fail to capture precise cell-type-specific regulatory signals, producing results that are difficult to interpret and lack portability, thereby compromising the reproducibility of research findings. To overcome these issues, we introduce CREscendo, a method that utilizes Tn5 cleavage frequencies and regulatory annotations to identify differential usage of candidate regulatory elements (CREs) across cell types. Our research advocates for moving away from traditional peak-based quantification in scATAC-seq toward a more robust framework that relies on a standardized reference of annotated CREs, enhancing both the accuracy and reproducibility of genomic studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Translator: A Transfer Learning Approach to Facilitate Single-Cell ATAC-Seq Data Analysis from Reference Dataset
    Xu, Siwei
    Skarica, Mario
    Hwang, Ahyeon
    Dai, Yi
    Lee, Cheyu
    Girgenti, Matthew J.
    Zhang, Jing
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (07) : 619 - 633
  • [42] Flexible and high-throughput microwell-based single-cell capture for multiomic ATAC-seq and RNA-seq profiling
    Nguyen, Rosary
    Huang, Hongduan
    Bao, Quyen
    Narayan, Punya
    Song, Hye-Won
    Hatami, Elham
    Zhang, Zhiqi
    McCarthy, Thomas
    Kim, Youngsook
    Li, Ruifang
    Gordon, Chelsea
    Wang, Larry
    Ayer, Aruna
    CANCER RESEARCH, 2024, 84 (06)
  • [43] Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mesenchymal Stem/Stromal Cells Derived from Human Placenta
    Li, Jinlu
    Wang, Quanlei
    An, Yanru
    Chen, Xiaoyan
    Xing, Yanan
    Deng, Qiuting
    Li, Zelong
    Wang, Shengpeng
    Dai, Xi
    Liang, Ning
    Hou, Yong
    Yang, Huanming
    Shang, Zhouchun
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [44] SCAN-ATAC-Sim: a scalable and efficient method for simulating single-cell ATAC-seq data from bulk-tissue experiments
    Chen, Zhanlin
    Zhang, Jing
    Liu, Jason
    Zhang, Zixuan
    Zhu, Jiangqi
    Lee, Donghoon
    Xu, Min
    Gerstein, Mark
    BIOINFORMATICS, 2021, 37 (12) : 1756 - 1758
  • [45] Single-cell allele-specific expression analysis reveals dynamic and cell-type-specific regulatory effects
    Guanghao Qi
    Benjamin J. Strober
    Joshua M. Popp
    Rebecca Keener
    Hongkai Ji
    Alexis Battle
    Nature Communications, 14
  • [46] Single-cell allele-specific expression analysis reveals dynamic and cell-type-specific regulatory effects
    Qi, Guanghao
    Strober, Benjamin J.
    Popp, Joshua M.
    Keener, Rebecca
    Ji, Hongkai
    Battle, Alexis
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [47] Author Correction: scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks
    Han Yuan
    David R. Kelley
    Nature Methods, 2023, 20 : 162 - 162
  • [48] scAVENGERS: a genotype-based deconvolution of individuals in multiplexed single-cell ATAC-seq data without reference genotypes
    Han, Seungbeom
    Kim, Kyukwang
    Park, Seongwan
    Lee, Andrew J.
    Chun, Hyonho
    Jung, Inkyung
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (04)
  • [49] DeepDRIM: a deep neural network to reconstruct cell-type-specific gene regulatory network using single-cell RNA-seq data
    Chen, Jiaxing
    Cheong, ChinWang
    Lan, Liang
    Zhou, Xin
    Liu, Jiming
    Lyu, Aiping
    Cheung, William K.
    Zhang, Lu
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [50] Construction of single-cell cross-species chromatin accessibility landscapes with combinatorial-hybridization-based ATAC-seq
    Zhang, Guodong
    Fu, Yuting
    Yang, Lei
    Ye, Fang
    Zhang, Peijing
    Zhang, Shuang
    Ma, Lifeng
    Li, Jiaqi
    Wu, Hanyu
    Han, Xiaoping
    Wang, Jingjing
    Guo, Guoji
    DEVELOPMENTAL CELL, 2024, 59 (06) : 793 - 811.e8