Capturing cell-type-specific activities of cis-regulatory elements from peak-based single-cell ATAC-seq

被引:0
|
作者
Chen, Mengjie [1 ,2 ,3 ]
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
来源
CELL GENOMICS | 2025年 / 5卷 / 03期
基金
美国国家卫生研究院;
关键词
ACCESSIBILITY;
D O I
10.1016/j.xgen.2025.100806
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Single-cell ATAC sequencing (scATAC-seq), a state-of-the-art genomic technique designed to map chromatin accessibility at the single-cell level, presents unique analytical challenges due to limited sampling and data sparsity. In this study, we use case studies to highlight the limitations of conventional peak-based methods for processing scATAC-seq data. These methods can fail to capture precise cell-type-specific regulatory signals, producing results that are difficult to interpret and lack portability, thereby compromising the reproducibility of research findings. To overcome these issues, we introduce CREscendo, a method that utilizes Tn5 cleavage frequencies and regulatory annotations to identify differential usage of candidate regulatory elements (CREs) across cell types. Our research advocates for moving away from traditional peak-based quantification in scATAC-seq toward a more robust framework that relies on a standardized reference of annotated CREs, enhancing both the accuracy and reproducibility of genomic studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Zhijian Li
    Christoph Kuppe
    Susanne Ziegler
    Mingbo Cheng
    Nazanin Kabgani
    Sylvia Menzel
    Martin Zenke
    Rafael Kramann
    Ivan G. Costa
    Nature Communications, 12
  • [22] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Akshaya Ramakrishnan
    Aikaterini Symeonidi
    Patrick Hanel
    Katharina T. Schmid
    Maria L. Richter
    Michael Schubert
    Maria Colomé-Tatché
    Nature Communications, 14
  • [23] A scalable technology for measuring cell-type-specific activity of cis-regulatory sequences
    Cohen, Barak
    NATURE GENETICS, 2023, 55 (02) : 172 - 173
  • [25] Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures
    Rai, Vivek
    Quang, Daniel X.
    Erdos, Michael R.
    Cusanovich, Darren A.
    Daza, Riza M.
    Narisu, Narisu
    Zou, Luli S.
    Didion, John P.
    Guan, Yuanfang
    Shendure, Jay
    Parker, Stephen C. J.
    Collins, Francis S.
    MOLECULAR METABOLISM, 2020, 32 : 109 - 121
  • [26] ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data
    Hansen Cheng
    Wenhao Ma
    Kun Wang
    Han Chu
    Guangchao Bao
    Yu Liao
    Yawen Yuan
    Yixiong Gou
    Liting Dong
    Jian Yang
    Haoyang Cai
    BMC Genomics, 24
  • [27] ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data
    Cheng, Hansen
    Ma, Wenhao
    Wang, Kun
    Chu, Han
    Bao, Guangchao
    Liao, Yu
    Yuan, Yawen
    Gou, Yixiong
    Dong, Liting
    Yang, Jian
    Cai, Haoyang
    BMC GENOMICS, 2023, 24 (01)
  • [28] A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility
    Wei Xu
    Yi Wen
    Yingying Liang
    Qiushi Xu
    Xuefei Wang
    Wenfei Jin
    Xi Chen
    Nature Protocols, 2021, 16 : 4084 - 4107
  • [29] A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder
    Wang, Zixuan
    Zhang, Yongqing
    Yu, Yun
    Zhang, Junming
    Liu, Yuhang
    Zou, Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [30] A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility
    Xu, Wei
    Wen, Yi
    Liang, Yingying
    Xu, Qiushi
    Wang, Xuefei
    Jin, Wenfei
    Chen, Xi
    NATURE PROTOCOLS, 2021, 16 (08) : 4084 - 4107