Noncommutative Schur functions for posets

被引:0
|
作者
Blasiak, J. [1 ]
Eriksson, H. [2 ]
Pylyavskyy, P. [3 ]
Siegl, I. [4 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA USA
[3] Univ Minnesota, Dept Math, Minneapolis, MN USA
[4] Univ Washington, Dept Math, Seattle, WA USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
QUASI-SYMMETRIC FUNCTIONS; CONJECTURE; IMMANENTS; GRAPHS;
D O I
10.1007/s00029-024-01010-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The machinery of noncommutative Schur functions is a general approach to Schur positivity of symmetric functions initiated by Fomin-Greene. Hwang recently adapted this theory to posets to give a new approach to the Stanley-Stembridge conjecture. We further develop this theory to prove that the symmetric function associated to any P-Knuth equivalence graph is Schur positive. This settles a conjecture of Kim and the third author, and refines results of Gasharov, Shareshian-Wachs, and Hwang on the Schur positivity of chromatic symmetric functions.
引用
收藏
页数:56
相关论文
共 50 条