Riemannian manifolds in three dimensions and ∗- η-Ricci-Yamabe solitons

被引:0
|
作者
Nagaraja, H. G. [1 ]
Pavithra, R. C. [1 ]
Sangeetha, M. [1 ]
机构
[1] Bangalore Univ, Dept Math, Bengaluru 560056, Karnataka, India
来源
关键词
*- eta-Ricci-Yamabe soliton; gradient almost *- eta-Ricci-Yamabe soliton;
D O I
10.32513/asetmj/1932200824047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the domain of Riemannian Geometry, we explore *-rj-Ricci-Yamabe soliton on a Riemannian manifold (G3, g). Initially, we establish that if the metric g of G3 constitutes a *-rj-RicciYamabe soliton, then G3 is necessarily Einstein, when the soliton vector field V is contact. Additionally, we investigated that the Riemannian manifold (G3, g), accommodates a gradient almost *-rj-Ricci-Yamabe soliton, concluding that it must be Einstein with a consistent scalar curvature r =-6. The associated functions of the *-rj-Ricci soliton are characterized by alpha = 1 and beta= 0.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 50 条
  • [21] Isometries on almost Ricci-Yamabe solitons
    Khatri, Mohan
    Zosangzuala, C.
    Singh, Jay Prakash
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 127 - 138
  • [22] A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons
    Ahmad, Mobin
    Gazala, Maha Atif
    Al-Shabrawi, Maha Atif
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [23] The Geometry of δ-Ricci-Yamabe Almost Solitons on Para- contact Metric Manifolds
    Mondal, Somnath
    Dey, Santu
    Suh, Young jin
    Bhattacharyya, Arindam
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (04): : 623 - 638
  • [24] Ricci-Yamabe Solitons in f (R)-gravity
    De, Krishnendu
    De, Uday Chand
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 334 - 342
  • [25] Characterization of Almost η-Ricci-Yamabe Soliton and Gradient Almost η-Ricci-Yamabe Soliton on Almost Kenmotsu Manifolds
    Mondal, Somnath
    Dey, Santu
    Bhattacharyya, Arindam
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (04) : 728 - 748
  • [26] Characterizations of GRW spacetimes admitting Ricci-Yamabe solitons
    Sardar, Arpan
    De, Uday Chand
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (10)
  • [27] Existence and Physical Properties of Gradient Ricci-Yamabe Solitons
    Guler, Sinem
    Karaca, Fatma
    GRAVITATION & COSMOLOGY, 2025, 31 (01): : 28 - 36
  • [28] Estimation of Almost Ricci-Yamabe Solitons on Static Spacetimes
    Siddiqi, Mohd Danish
    De, Uday Chand
    Deshmukh, Sharief
    FILOMAT, 2022, 36 (02) : 397 - 407
  • [29] Relativistic perfect fluid spacetimes and Ricci-Yamabe solitons
    Siddiqi, Mohd Danish
    De, Uday Chand
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (01)
  • [30] Gradient Ricci-Yamabe Soliton on Twisted Product Manifolds
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    Han, Chang Yong
    JOURNAL OF MATHEMATICS, 2022, 2022