Riemannian manifolds in three dimensions and ∗- η-Ricci-Yamabe solitons

被引:0
|
作者
Nagaraja, H. G. [1 ]
Pavithra, R. C. [1 ]
Sangeetha, M. [1 ]
机构
[1] Bangalore Univ, Dept Math, Bengaluru 560056, Karnataka, India
来源
关键词
*- eta-Ricci-Yamabe soliton; gradient almost *- eta-Ricci-Yamabe soliton;
D O I
10.32513/asetmj/1932200824047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the domain of Riemannian Geometry, we explore *-rj-Ricci-Yamabe soliton on a Riemannian manifold (G3, g). Initially, we establish that if the metric g of G3 constitutes a *-rj-RicciYamabe soliton, then G3 is necessarily Einstein, when the soliton vector field V is contact. Additionally, we investigated that the Riemannian manifold (G3, g), accommodates a gradient almost *-rj-Ricci-Yamabe soliton, concluding that it must be Einstein with a consistent scalar curvature r =-6. The associated functions of the *-rj-Ricci soliton are characterized by alpha = 1 and beta= 0.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 50 条
  • [11] Curvature properties of α-cosymplectic manifolds with ∗-η-Ricci-Yamabe solitons
    Vandana
    Budhiraja, Rajeev
    Diop, Aliya Naaz Siddiqui
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (01): : 91 - 105
  • [12] Gradient Ricci-Yamabe solitons on warped product manifolds
    Karaca, Fatma
    FILOMAT, 2023, 37 (07) : 2199 - 2207
  • [13] Kenmotsu 3-manifold admitting gradient Ricci-Yamabe solitons and * - η- Ricci-Yamabe solitons
    Prasad, Rajendra
    Kumar, Vinay
    FILOMAT, 2024, 38 (13) : 4569 - 4583
  • [14] A study of *-Ricci-Yamabe solitons on LP-Kenmotsu manifolds
    Haseeb, Abdul
    Mofarreh, Fatemah
    Chaubey, Sudhakar Kumar
    Prasad, Rajendra
    AIMS MATHEMATICS, 2024, 9 (08): : 22532 - 22546
  • [15] On Gradient Ricci-Yamabe Solitons
    Karaca, Fatma
    Guler, Sinem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [16] On Almost Kenmotsu Manifolds admitting Conformal Ricci-Yamabe Solitons
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43 : 23 - 23
  • [17] Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds
    Shivaprasanna, G. S.
    Rajendra, R.
    Reddy, P. Siva Kota
    Somashekhara, G.
    Pavithra, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [18] Compact almost Co-Kahler manifolds and Ricci-Yamabe solitons
    Suh, Young Jin
    De, Krishnendu
    De, Uday Chand
    FILOMAT, 2024, 38 (23) : 8069 - 8080
  • [19] ?-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Ahmadini, Abdullah Ali H.
    MATHEMATICS, 2023, 11 (01)
  • [20] CERTAIN RESULTS OF RICCI-YAMABE SOLITONS ON (LCS)N-MANIFOLDS
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (04): : 797 - 812