Near-surface permafrost extent and active layer thickness characterized by reanalysis/assimilation data

被引:0
|
作者
Liu, Zequn [1 ,2 ]
Guo, Donglin [2 ,3 ,4 ]
Hua, Wei [1 ]
Chen, Yihui [3 ]
机构
[1] Chengdu Univ Informat Technol, Sch Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Meteorol Disaster Predict & Warning Engn Lab Sichu, Chengdu, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Phys, Nansen Zhu Int Res Ctr, Beijing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Minist Educ, Key Lab Meteorol Disaster, Nanjing, Peoples R China
[4] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Earth Syst Numer Modeling & Applicat, Beijing, Peoples R China
来源
ATMOSPHERIC SCIENCE LETTERS | 2025年 / 26卷 / 01期
基金
中国国家自然科学基金;
关键词
active layer thickness; permafrost; reanalysis/assimilation data; CLIMATE-CHANGE; SOIL; DEGRADATION; REANALYSIS; MODEL;
D O I
10.1002/asl.1289
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Whilst permafrost change is widely concerned in the context of global warming, lack of observations becomes one of major limitations for conducting large-scale and long-term permafrost change research. Reanalysis/assimilation data in theory can make up for the lack of observations, but how they characterize permafrost extent and active layer thickness remains unclear. Here, we investigate the near-surface permafrost extent and active layer thickness characterized by seven reanalysis/assimilation datasets (CFSR, MERRA-2, ERA5, ERA5-Land, GLDAS-CLSMv20, GLDAS-CLSMv21, and GLDAS-Noah). Results indicate that most of reanalysis/assimilation data have limited abilities in characterizing near-surface permafrost extent and active layer thickness. GLDAS-CLSMv20 is overall optimal in terms of comprehensive performance in characterizing both present-day near-surface permafrost extent and active layer thickness change. The GLDAS-CLSMv20 indicates that near-surface permafrost extent decreases by -0.69 x 106 km2 decade-1 and active layer deepens by 0.06 m decade-1 from 1979 to 2014. Change in active layer is significantly correlated to air temperature, precipitation, and downward longwave radiation in summer, but the correlations show regional differences. Our study implies an imperative to advance reanalysis/assimilation data's abilities to reproduce permafrost, especially for reanalysis data.
引用
收藏
页数:11
相关论文
共 50 条
  • [42] The response of near-surface permafrost to seasonal regime transitions in tundra terrain
    Outcalt, SI
    Hinkel, KM
    ARCTIC AND ALPINE RESEARCH, 1996, 28 (03) : 274 - 283
  • [43] The Impact of Surface Wind Data Assimilation on the Predictability of Near-Surface Plume Advection in the Case of the Fukushima Nuclear Accident
    Sekiyama, Tsuyoshi Thomas
    Kajino, Mizuo
    Kunii, Masaru
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2017, 95 (06) : 447 - 454
  • [44] Schottky diodes with a δ-doped near-surface layer
    Osvald, J
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (12) : 6205 - 6209
  • [45] Changes in the Near-surface Shear Layer of the Sun
    Antia, H. M.
    Basu, Sarbani
    ASTROPHYSICAL JOURNAL, 2022, 924 (01):
  • [46] Thin Near-Surface Layer in a Resist Film
    V. I. Trigub
    A. V. Plotnov
    A. N. Kiselev
    Russian Journal of Applied Chemistry, 2003, 76 : 1360 - 1361
  • [47] Schottky diodes with a δ-doped near-surface layer
    Osvald, J.
    1600, American Institute of Physics Inc. (90):
  • [48] Diode Lasers with Near-Surface Active Region
    Payusov, A. S.
    Gordeev, N. Yu.
    Serin, A. A.
    Kulagina, M. M.
    Kalyuzhnyy, N. A.
    Mintairov, S. A.
    Maximov, M. V.
    Zhukov, A. E.
    SEMICONDUCTORS, 2018, 52 (14) : 1901 - 1904
  • [49] Diode Lasers with Near-Surface Active Region
    A. S. Payusov
    N. Yu. Gordeev
    A. A. Serin
    M. M. Kulagina
    N. A. Kalyuzhnyy
    S. A. Mintairov
    M. V. Maximov
    A. E. Zhukov
    Semiconductors, 2018, 52 : 1901 - 1904
  • [50] Surface and guided waves in the hyperbolic graded-index medium with a near-surface cladding layer characterized by the Kerr nonlinearity disappearance
    Savotchenko, S. E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (12):