Near-surface permafrost extent and active layer thickness characterized by reanalysis/assimilation data

被引:0
|
作者
Liu, Zequn [1 ,2 ]
Guo, Donglin [2 ,3 ,4 ]
Hua, Wei [1 ]
Chen, Yihui [3 ]
机构
[1] Chengdu Univ Informat Technol, Sch Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Meteorol Disaster Predict & Warning Engn Lab Sichu, Chengdu, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Phys, Nansen Zhu Int Res Ctr, Beijing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Minist Educ, Key Lab Meteorol Disaster, Nanjing, Peoples R China
[4] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Earth Syst Numer Modeling & Applicat, Beijing, Peoples R China
来源
ATMOSPHERIC SCIENCE LETTERS | 2025年 / 26卷 / 01期
基金
中国国家自然科学基金;
关键词
active layer thickness; permafrost; reanalysis/assimilation data; CLIMATE-CHANGE; SOIL; DEGRADATION; REANALYSIS; MODEL;
D O I
10.1002/asl.1289
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Whilst permafrost change is widely concerned in the context of global warming, lack of observations becomes one of major limitations for conducting large-scale and long-term permafrost change research. Reanalysis/assimilation data in theory can make up for the lack of observations, but how they characterize permafrost extent and active layer thickness remains unclear. Here, we investigate the near-surface permafrost extent and active layer thickness characterized by seven reanalysis/assimilation datasets (CFSR, MERRA-2, ERA5, ERA5-Land, GLDAS-CLSMv20, GLDAS-CLSMv21, and GLDAS-Noah). Results indicate that most of reanalysis/assimilation data have limited abilities in characterizing near-surface permafrost extent and active layer thickness. GLDAS-CLSMv20 is overall optimal in terms of comprehensive performance in characterizing both present-day near-surface permafrost extent and active layer thickness change. The GLDAS-CLSMv20 indicates that near-surface permafrost extent decreases by -0.69 x 106 km2 decade-1 and active layer deepens by 0.06 m decade-1 from 1979 to 2014. Change in active layer is significantly correlated to air temperature, precipitation, and downward longwave radiation in summer, but the correlations show regional differences. Our study implies an imperative to advance reanalysis/assimilation data's abilities to reproduce permafrost, especially for reanalysis data.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Flows of the near-surface boundary layer
    Zheng, Xiaojing
    Environmental Science and Engineering, 2009, 0 (9783540882534): : 19 - 60
  • [22] Solving the complex near-surface problem using 3D data-driven near-surface layer replacement
    Sun, Yimin
    Verschuur, Eric
    Vrolijk, Jan Willem
    GEOPHYSICAL PROSPECTING, 2014, 62 (03) : 491 - 506
  • [23] Transient hysteresis of near-surface permafrost response to external forcing
    Alexey V. Eliseev
    Pavel F. Demchenko
    Maxim M. Arzhanov
    Igor I. Mokhov
    Climate Dynamics, 2014, 42 : 1203 - 1215
  • [24] Transient hysteresis of near-surface permafrost response to external forcing
    Eliseev, Alexey V.
    Demchenko, Pavel F.
    Arzhanov, Maxim M.
    Mokhov, Igor I.
    CLIMATE DYNAMICS, 2014, 42 (5-6) : 1203 - 1215
  • [25] Polymer near-surface behavior characterized by reflectometry and complementary techniques
    Foster, MD
    Morton, M
    ANTEC 2000: SOCIETY OF PLASTICS ENGINEERS TECHNICAL PAPERS, CONFERENCE PROCEEDINGS, VOLS I-III, 2000, : 1998 - 2002
  • [26] Spatially characterizing land surface deformation and permafrost active layer thickness for Donnelly installation of Alaska using DInSAR and MODIS data
    Howard, Heidi R.
    Manandhar, Shishir
    Wang, Qing
    Mcmillan, Juliana M.
    Qie, Guangping
    Liu, Xian
    Thapa, Kiran
    Xu, Xiaoyu
    Wang, Guangxing
    Cold Regions Science and Technology, 2022, 196
  • [27] Spatially characterizing land surface deformation and permafrost active layer thickness for Donnelly installation of Alaska using DInSAR and MODIS data
    Howard, Heidi R.
    Manandhar, Shishir
    Wang, Qing
    Mcmillan, Juliana M.
    Qie, Guangping
    Liu, Xian
    Thapa, Kiran
    Xu, Xiaoyu
    Wang, Guangxing
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2022, 196
  • [28] Simulated response of the active layer thickness of permafrost to climate change
    Li, Ruichao
    Xie, Jinbo
    Xie, Zhenghui
    Gao, Junqiang
    Jia, Binghao
    Qin, Peihua
    Wang, Longhuan
    Wang, Yan
    Liu, Bin
    Chen, Si
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2021, 14 (01)
  • [29] Evaluation of near-surface ozone over Europe from the MACC reanalysis
    Katragkou, E.
    Zanis, P.
    Tsikerdekis, A.
    Kapsomenakis, J.
    Melas, D.
    Eskes, H.
    Flemming, J.
    Huijnen, V.
    Inness, A.
    Schultz, M. G.
    Stein, O.
    Zerefos, C. S.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (07) : 2299 - 2314
  • [30] Annual and semiannual cycles of midlatitude near-surface temperature and tropospheric baroclinicity: reanalysis data and AOGCM simulations
    Lembo, Valerio
    Bordi, Isabella
    Speranza, Antonio
    EARTH SYSTEM DYNAMICS, 2017, 8 (02) : 295 - 312