ON b-CONCATENATIONS OF TWO k-GENERALIZED FIBONACCI NUMBERS

被引:0
|
作者
Alan, M. [1 ]
Altassan, A. [2 ]
机构
[1] Yildiz Tech Univ, Dept Math, TR-34210 Istanbul, Turkiye
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Fibonacci number; k-generalized Fibonacci number; k-Fibonacci numbers; concatenation; linear form in logarithms; Diophantine equation; LOGARITHMS;
D O I
10.1007/s10474-025-01517-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 2 be an integer. One of the generalization of the classical Fibonacci sequence is defined by the recurrence relation F-n((k) )= F-n-1((k) )+ & ctdot;+ F-n-k((k)) for all n >= 2 with the initial values F-i((k) )= 0 for i = 2 - k,& mldr;, 0 and F-1((k)) = 1 .F-n((k)) is an order k generalization of the Fibonacci sequence and it is called k-generalized Fibonacci sequence or shortly k-Fibonacci sequence. Banks and Luca [7], among other things, determined all Fibonacci numbers which are concatenations of two Fibonacci numbers. In this paper, we consider the analogue of this problem in more general manner by taking into account the concatenations of two terms of the same sequence in base b >= 2. First, we show that there exists only finitely many such concatenations for each k >= 2 and b >= 2. Next, we completely determine all these concatenations for all k >= 2 and 2 <= b <= 10.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Multiplicative Independence in k-Generalized Fibonacci Sequences
    Carlos Alexis Gómez Ruiz
    Florian Luca
    Lithuanian Mathematical Journal, 2016, 56 : 503 - 517
  • [32] Markov triples with k-generalized Fibonacci components
    Gomez, Carlos A.
    Gomez, Jhonny C.
    Luca, Florian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2020, 52 : 107 - 115
  • [33] Diophantine Triples and k-Generalized Fibonacci Sequences
    Clemens Fuchs
    Christoph Hutle
    Florian Luca
    László Szalay
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1449 - 1465
  • [34] On Concatenations of Fibonacci and Lucas Numbers
    Murat Alan
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2725 - 2741
  • [35] On Concatenations of Fibonacci and Lucas Numbers
    Alan, Murat
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2725 - 2741
  • [36] Multiplicative Independence in k-Generalized Fibonacci Sequences
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    LITHUANIAN MATHEMATICAL JOURNAL, 2016, 56 (04) : 503 - 517
  • [37] ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI POLYNOMIAL, II
    Luca, Florian
    FIBONACCI QUARTERLY, 2024, 62 (03): : 193 - 200
  • [38] Diophantine Triples and k-Generalized Fibonacci Sequences
    Fuchs, Clemens
    Hutle, Christoph
    Luca, Florian
    Szalay, Laszlo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1449 - 1465
  • [39] k-Generalized Pell Numbers Which are Concatenation of Two Repdigits
    Siar, Zafer
    Keskin, Refik
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [40] FIBONACCI NUMBERS THAT ARE η-CONCATENATIONS OF LEONARDO AND LUCAS NUMBERS
    Taher, Hunar Sherzad
    Dash, Saroj Kumar
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2025, 78 (02): : 171 - 180