Gate-Based Quantum Simulation of Gaussian Bosonic Circuits on Exponentially Many Modes

被引:1
|
作者
Barthe, Alice [1 ,2 ,3 ]
Cerezo, M. [4 ,5 ]
Sornborger, Andrew T. [4 ]
Larocca, Martin [2 ,6 ]
Garcia-Martin, Diego [4 ]
机构
[1] CERN, CH-1211 Geneva, Switzerland
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[3] Leiden Univ, Inst Lorentz, NL-2333CA Leiden, Netherlands
[4] Los Alamos Natl Lab, Informat Sci, Los Alamos, NM 87545 USA
[5] Quantum Sci Ctr, Oak Ridge, TN 37931 USA
[6] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
D O I
10.1103/PhysRevLett.134.070604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a framework for simulating, on an (n & thorn; 1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2nmodes. Specifically, we encode the initial bosonic state's expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (nonparticle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on similar to 8 x 109 modes, illustrating the power of our framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Generation of Gaussian Quantum Discord of Two Bosonic Modes in a Thermal Environment
    Mihaescu, Tatiana
    Isar, Aurelian
    TIM15-16 PHYSICS CONFERENCE, 2017, 1796
  • [22] A Scalable Quantum Gate-Based Implementation for Causal Hypothesis Testing
    Kundu, Akash
    Acharya, Tamal
    Sarkar, Aritra
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (08)
  • [23] Module for arbitrary controlled rotation in gate-based quantum algorithms
    Cui, Wei
    Yan, Shilu
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 626
  • [24] Multiple Query Optimization Using a Gate-Based Quantum Computer
    Fankhauser, Tobias
    Soler, Marc E.
    Fuchslin, Rudolf Marcel
    Stockinger, Kurt
    IEEE ACCESS, 2023, 11 : 114031 - 114043
  • [25] Hybrid Helmholtz machines: a gate-based quantum circuit implementation
    Teresa J. van Dam
    Niels M. P. Neumann
    Frank Phillipson
    Hans van den Berg
    Quantum Information Processing, 2020, 19
  • [26] Hybrid Helmholtz machines: a gate-based quantum circuit implementation
    van Dam, Teresa J.
    Neumann, Niels M. P.
    Phillipson, Frank
    van den Berg, Hans
    QUANTUM INFORMATION PROCESSING, 2020, 19 (06)
  • [27] Gate-level simulation of quantum circuits
    Viamontes, GF
    Rajagopalan, M
    Markov, IL
    Hayes, JP
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 311 - 314
  • [28] Gate-level simulation of quantum circuits
    Viamontes, GF
    Rajagopalan, M
    Markov, IL
    Hayes, JP
    ASP-DAC 2003: PROCEEDINGS OF THE ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, 2003, : 295 - 301
  • [29] PyQBench: A Python']Python library for benchmarking gate-based quantum computers
    Jalowiecki, Konrad
    Lewandowska, Paulina
    Pawela, Lukasz
    SOFTWAREX, 2023, 24
  • [30] Demonstration of system-bath physics on a gate-based quantum computer
    Stadler, Pascal
    Lodi, Matteo
    Khedri, Andisheh
    Reiner, Rolando
    Bark, Kirsten
    Vogt, Nicolas
    Marthaler, Michael
    PHYSICAL REVIEW A, 2025, 111 (02)