Gate-Based Quantum Simulation of Gaussian Bosonic Circuits on Exponentially Many Modes

被引:1
|
作者
Barthe, Alice [1 ,2 ,3 ]
Cerezo, M. [4 ,5 ]
Sornborger, Andrew T. [4 ]
Larocca, Martin [2 ,6 ]
Garcia-Martin, Diego [4 ]
机构
[1] CERN, CH-1211 Geneva, Switzerland
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[3] Leiden Univ, Inst Lorentz, NL-2333CA Leiden, Netherlands
[4] Los Alamos Natl Lab, Informat Sci, Los Alamos, NM 87545 USA
[5] Quantum Sci Ctr, Oak Ridge, TN 37931 USA
[6] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
D O I
10.1103/PhysRevLett.134.070604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a framework for simulating, on an (n & thorn; 1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2nmodes. Specifically, we encode the initial bosonic state's expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (nonparticle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on similar to 8 x 109 modes, illustrating the power of our framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Classical simulation of Gaussian quantum circuits with non-Gaussian input states
    Chabaud, Ulysse
    Ferrini, Giulia
    Grosshans, Frederic
    Markham, Damian
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [42] Quantum reinforcement learning Comparing quantum annealing and gate-based quantum computing with classical deep reinforcement learning
    Neumann, Niels M. P.
    de Heer, Paolo B. U. L.
    Phillipson, Frank
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [43] Majority Gate-Based Feedback Latches for Adiabatic Quantum Flux Parametron Logic
    Tsuji, Naoki
    Takeuchi, Naoki
    Yamanashi, Yuki
    Ortlepp, Thomas
    Yoshikawa, Nobuyuki
    IEICE TRANSACTIONS ON ELECTRONICS, 2016, E99C (06): : 710 - 716
  • [44] Classical simulation of quantum circuits using fewer Gaussian eliminations
    Kocia, Lucas
    Sarovar, Mohan
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [45] Gate-based circuit designs for quantum adder-inspired quantum random walks on superconducting qubits
    Koch, Daniel
    Samodurov, Michael
    Projansky, Andrew
    Alsing, Paul M.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2022, 20 (03)
  • [46] Intelligent pharmaceutical patent search on a near-term gate-based quantum computer
    Pei-Hua Wang
    Jen-Hao Chen
    Yufeng Jane Tseng
    Scientific Reports, 12
  • [47] Fast Gate-Based Readout of Silicon Quantum Dots Using Josephson Parametric Amplification
    Schaal, S.
    Ahmed, I.
    Haigh, J. A.
    Hutin, L.
    Bertrand, B.
    Barraud, S.
    Vinet, M.
    Lee, C. -M.
    Stelmashenko, N.
    Robinson, J. W. A.
    Qiu, J. Y.
    Hacohen-Gourgy, S.
    Siddiqi, I.
    Gonzalez-Zalba, M. F.
    Morton, J. J. L.
    PHYSICAL REVIEW LETTERS, 2020, 124 (06)
  • [48] Perturbative gadgets for gate-based quantum computing: Nonrecursive constructions without subspace restrictions
    Cichy, Simon
    Faehrmann, Paul K.
    Khatri, Sumeet
    Eisert, Jens
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [49] Engineered Gate-Based Nanoscaled JK Flip-Flop: Design, Simulation and Applications
    Chadha, Dev
    Khan, Anam
    Alkhammash, Hend I.
    Loan, Sajad A.
    NANO, 2024,
  • [50] A new design for XOR gate-based reversible double Feynman gate in nano-scale quantum-dots
    Huang X.
    Yan G.
    Yang X.
    Optik, 2023, 278