COMPLETE BLOOD COUNT BASED MACHINE LEARNING ALGORITHMS FOR SEPSIS DETECTION

被引:0
|
作者
Urrechaga, Eloisa [1 ]
Fernandez, Monica [2 ]
Burzako, Arantza [1 ]
Aguirre, Urko [1 ]
机构
[1] Hosp Univ Galdakao Usansolo, Galdakao, Spain
[2] Hosp Univ Araba, Vitoria, Spain
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:106 / 107
页数:2
相关论文
共 50 条
  • [21] Bacteremia detection from complete blood count and differential leukocyte count with machine learning: complementary and competitive with C-reactive protein and procalcitonin tests
    Lien, Frank
    Lin, Huang-Shen
    Wu, You-Ting
    Chiueh, Tzong-Shi
    BMC INFECTIOUS DISEASES, 2022, 22 (01)
  • [22] Development and validation of a machine learning-based interpretable model for predicting sepsis by complete blood cell parameters
    Zhang, Tiancong
    Wang, Shuang
    Meng, Qiang
    Li, Liman
    Yuan, Mengxue
    Guo, Shuo
    Fu, Yang
    HELIYON, 2024, 10 (14)
  • [23] Bacteremia detection from complete blood count and differential leukocyte count with machine learning: complementary and competitive with C-reactive protein and procalcitonin tests
    Frank Lien
    Huang-Shen Lin
    You-Ting Wu
    Tzong-Shi Chiueh
    BMC Infectious Diseases, 22
  • [24] Machine fault detection methods based on machine learning algorithms: A review
    Ciaburro, Giuseppe
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (11) : 11453 - 11490
  • [25] The Complete Blood Count Sepsis Index Using Monocyte Distribution Width for Early Detection of Sepsis in Patients Without Obvious Signs
    Levin, Scott
    Sarani, Nima
    Hinson, Jeremiah
    Naiman, Melissa
    Cannon, Chad
    Smith, Aria
    Steinhart, Benjamin
    Debraine, Arnaud
    Kehoe, Sara
    Immhoff, Bryan
    Taribichi, Yasir
    Malinovska, Alexandra
    Badaki-Makun, Kemi
    CRITICAL CARE EXPLORATIONS, 2025, 7 (01)
  • [26] Prediction of ICU admission for COVID-19 patients: a Machine Learning approach based on Complete Blood Count data
    Famiglini, Lorenzo
    Bini, Giorgio
    Carobene, Anna
    Campagner, Andrea
    Cabitza, Federico
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 160 - 165
  • [27] Machine-learning-based predictive classifier for bone marrow failure syndrome using complete blood count data
    Seo, Jeongmin
    Lee, Chansub
    Koh, Youngil
    Sun, Choong Hyun
    Lee, Jong-Mi
    An, Hong Yul
    Kim, Myungshin
    ISCIENCE, 2024, 27 (11)
  • [28] TubIAgnosis: A machine learning-based web application for active tuberculosis diagnosis using complete blood count data
    Ghermi, Mohamed
    Messedi, Meriam
    Adida, Chahira
    Belarbi, Kada
    Djazouli, Mohamed El Amine
    Berrazeg, Zahia Ibtissem
    Sellami, Maryam Kallel
    Ghezini, Younes
    Louati, Mahdi
    DIGITAL HEALTH, 2024, 10
  • [29] A Multianalyte Machine Learning Model to Detect Wrong Blood in Complete Blood Count Tube Errors in a Pediatric Setting
    Graham, Brendan, V
    Master, Stephen R.
    Obstfeld, Amrom E.
    Wilson, Robert B.
    CLINICAL CHEMISTRY, 2025, 71 (03) : 418 - 427
  • [30] Complete blood count and differential in diagnosis of early onset neonatal sepsis
    Ognean, Maria Livia
    Boicean, Adrian
    Sular, Floredana-Laura
    Cucerea, Manuela
    REVISTA ROMANA DE MEDICINA DE LABORATOR, 2017, 25 (01): : 101 - 108