Machine-learning-based predictive classifier for bone marrow failure syndrome using complete blood count data

被引:0
|
作者
Seo, Jeongmin [1 ,2 ]
Lee, Chansub [3 ]
Koh, Youngil [1 ,3 ,4 ]
Sun, Choong Hyun [3 ]
Lee, Jong-Mi [5 ,6 ]
An, Hong Yul [3 ]
Kim, Myungshin [5 ,6 ]
机构
[1] Seoul Natl Univ Hosp, Dept Internal Med, Seoul, South Korea
[2] Seoul Natl Univ, Bundang Hosp, Dept Internal Med, Seongnam Si, Gyeonggi Do, South Korea
[3] NOBO Med Inc, Seoul, South Korea
[4] Seoul Natl Univ Hosp, Ctr Precis Med, Seoul, South Korea
[5] Catholic Univ Korea, Coll Med, Dept Lab Med, Seoul, South Korea
[6] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Catholic Genet Lab Ctr, Seoul, South Korea
关键词
MYELODYSPLASTIC SYNDROMES; UNEXPLAINED CYTOPENIAS; DIAGNOSIS;
D O I
10.1016/j.isci.2024.111082
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate risk assessment of bone marrow failure syndrome (BMFS) is crucial for early diagnosis and intervention. Interpreting complete blood count (CBC) data is challenging without hematological expertise. To support primary physicians, we developed a predictive model using basic demographics and CBC data collected retrospectively from two major hospitals in South Korea. Binary classifiers for aplastic anemia and myelodysplastic syndrome were created and combined to form a BMFS classifier. The model demonstrated high performance in distinguishing BMFS, with consistent results across different CBC feature sets, confirmed by external validation. This algorithm provides a practical guide for primary physicians to identify BMFS based on initial CBC data, aiding in effective triage, timely referrals, and improved patient care.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data
    Schipper, Anoeska
    Rutten, Matthieu
    van Gammeren, Adriaan
    Harteveld, Cornelis L.
    Urrechaga, Eloisa
    Weerkamp, Floor
    den Besten, Gijs
    Krabbe, Johannes
    Slomp, Jennichjen
    Schoonen, Lise
    Broeren, Maarten
    van Wijnen, Merel
    Huijskens, Mirelle J. A. J.
    Koopmann, Tamara
    van Ginneken, Bram
    Kusters, Ron
    Kurstjens, Steef
    CLINICAL CHEMISTRY, 2024, 70 (08) : 1064 - 1075
  • [2] PREDICTING THE DIAGNOSIS OF A MYELODYSPLASTIC SYNDROME USING COMPLETE BLOOD COUNT AND CELL POPULATION DATA PRIOR TO BONE MARROW BIOPSY
    Obstfeld, A.
    Velu, P.
    Sadigh, S.
    Raess, P.
    Bagg, A.
    LEUKEMIA RESEARCH, 2017, 55 : S77 - S77
  • [3] A machine-learning-based algorithm for bone marrow cell differential counting
    Yu, Ta-Chuan
    Yang, Cheng-Kun
    Hsu, Wei-Han
    Hsu, Cheng-An
    Wang, Hsiao-Chun
    Hsiao, Hsin-Jung
    Chao, Hsiao-Ling
    Hsieh, Han-Peng
    Wu, Jia-Rong
    Tsai, Yen-Chun
    Chiang, Yi-Mei
    Lee, Poshing
    Lin, Che-Pin
    Chen, Ling-Ping
    Sung, Yung-Chuan
    Yang, Ya-Yun
    Yu, Chin-Ling
    Lin, Chih-Kang
    Kang, Chia-Pin
    Chang, Che-Wei
    Chang, Hsiu-Lin
    Chu, Jung-Hsuan
    Kao, Kai-Ling Cathy
    Lin, Li
    Wu, Min-Sheng
    Lin, Pei-Chen
    Yang, Po-Hsu
    Zhang, Qun-Yi
    Chuang, Ming-Kai
    Chou, Sheng-Chieh
    Huang, Sheng-Chuan
    Cheng, Chieh-Lung
    Yao, Chi-Yuan
    Tien, Feng-Ming
    Yeh, Chao-Yuan
    Chou, Wen-Chien
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 194
  • [4] A machine-learning-based algorithm for bone marrow cell differential counting
    Chen, Ludan
    Zhou, Wei
    Bao, Yuhai
    He, Xiubin
    Deng, Liangji
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 288
  • [5] TubIAgnosis: A machine learning-based web application for active tuberculosis diagnosis using complete blood count data
    Ghermi, Mohamed
    Messedi, Meriam
    Adida, Chahira
    Belarbi, Kada
    Djazouli, Mohamed El Amine
    Berrazeg, Zahia Ibtissem
    Sellami, Maryam Kallel
    Ghezini, Younes
    Louati, Mahdi
    DIGITAL HEALTH, 2024, 10
  • [6] COMPLETE BLOOD COUNT BASED MACHINE LEARNING ALGORITHMS FOR SEPSIS DETECTION
    Urrechaga, Eloisa
    Fernandez, Monica
    Burzako, Arantza
    Aguirre, Urko
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2024, 46 : 106 - 107
  • [7] Gearbox Failure Diagnosis Using a Multisensor Data-Fusion Machine-Learning-Based Approach
    Habbouche, Houssem
    Benkedjouh, Tarak
    Amirat, Yassine
    Benbouzid, Mohamed
    ENTROPY, 2021, 23 (06)
  • [8] Machine-Learning-Based Diabetes Prediction Using Multisensor Data
    Site, Aditi
    Nurmi, Jari
    Lohan, Elena Simona
    IEEE SENSORS JOURNAL, 2023, 23 (22) : 28370 - 28377
  • [9] Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data
    Hornbrook, Mark C.
    Goshen, Ran
    Choman, Eran
    O'Keeffe-Rosetti, Maureen
    Kinar, Yaron
    Liles, Elizabeth G.
    Rust, Kristal C.
    DIGESTIVE DISEASES AND SCIENCES, 2017, 62 (10) : 2719 - 2727
  • [10] Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data
    Mark C. Hornbrook
    Ran Goshen
    Eran Choman
    Maureen O’Keeffe-Rosetti
    Yaron Kinar
    Elizabeth G. Liles
    Kristal C. Rust
    Digestive Diseases and Sciences, 2017, 62 : 2719 - 2727