Machine-learning-based predictive classifier for bone marrow failure syndrome using complete blood count data

被引:0
|
作者
Seo, Jeongmin [1 ,2 ]
Lee, Chansub [3 ]
Koh, Youngil [1 ,3 ,4 ]
Sun, Choong Hyun [3 ]
Lee, Jong-Mi [5 ,6 ]
An, Hong Yul [3 ]
Kim, Myungshin [5 ,6 ]
机构
[1] Seoul Natl Univ Hosp, Dept Internal Med, Seoul, South Korea
[2] Seoul Natl Univ, Bundang Hosp, Dept Internal Med, Seongnam Si, Gyeonggi Do, South Korea
[3] NOBO Med Inc, Seoul, South Korea
[4] Seoul Natl Univ Hosp, Ctr Precis Med, Seoul, South Korea
[5] Catholic Univ Korea, Coll Med, Dept Lab Med, Seoul, South Korea
[6] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Catholic Genet Lab Ctr, Seoul, South Korea
关键词
MYELODYSPLASTIC SYNDROMES; UNEXPLAINED CYTOPENIAS; DIAGNOSIS;
D O I
10.1016/j.isci.2024.111082
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate risk assessment of bone marrow failure syndrome (BMFS) is crucial for early diagnosis and intervention. Interpreting complete blood count (CBC) data is challenging without hematological expertise. To support primary physicians, we developed a predictive model using basic demographics and CBC data collected retrospectively from two major hospitals in South Korea. Binary classifiers for aplastic anemia and myelodysplastic syndrome were created and combined to form a BMFS classifier. The model demonstrated high performance in distinguishing BMFS, with consistent results across different CBC feature sets, confirmed by external validation. This algorithm provides a practical guide for primary physicians to identify BMFS based on initial CBC data, aiding in effective triage, timely referrals, and improved patient care.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Active bone marrow segmentation based on computed tomography imaging in anal cancer patients: A machine-learning-based proof of concept
    Fiandra, C.
    Rosati, S.
    Arcadipane, F.
    Dinapoli, N.
    Fato, M.
    Franco, P.
    Gallio, E.
    Gennarino, D. Scaffidi
    Silvetti, P.
    Zara, S.
    Ricardi, U.
    Balestra, G.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 113
  • [22] External validation of Machine Learning models for COVID-19 detection based on Complete Blood Count
    Campagner, Andrea
    Carobene, Anna
    Cabitza, Federico
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2021, 9 (01)
  • [23] External validation of Machine Learning models for COVID-19 detection based on Complete Blood Count
    Andrea Campagner
    Anna Carobene
    Federico Cabitza
    Health Information Science and Systems, 9
  • [24] Hematological value references for free-living saffron finch (Sicalis flaveola) using a machine-learning-based classifier
    Jacob M.L.P.
    Nunes C.S.M.
    de Oliveira Borba P.C.
    Ribeiro G.P.
    de Andrade T.U.
    Endringer D.C.
    Lenz D.
    Comparative Clinical Pathology, 2019, 28 (4) : 937 - 941
  • [25] Machine-Learning-Based Approach for Anonymous Online Customer Purchase Intentions Using Clickstream Data
    Wen, Zhanming
    Lin, Weizhen
    Liu, Hongwei
    SYSTEMS, 2023, 11 (05):
  • [26] Machine-Learning-Based Prediction of the Glass Transition Temperature of Organic Compounds Using Experimental Data
    Armeli, Gianluca
    Peters, Jan-Hendrik
    Koop, Thomas
    ACS OMEGA, 2023, 8 (13): : 12298 - 12309
  • [27] Genomic-Based Machine Learning Towards Prediction of the Etiology of Bone Marrow Failure Syndromes
    Gutierrez-Rodrigues, Fernanda
    Munger, Eric
    Ma, Xiaoyang
    Tang, Youbao
    Groarke, Emma M.
    Patel, Bhavisha A.
    Bazzo Catto, Luiz Fernando
    Cle, Diego V.
    Niewisch, Marena R.
    Donaires, Flavia S.
    Kajigaya, Sachiko
    Dunbar, Cynthia E.
    Giri, Neelam
    De Oliveira, Michel Michels
    McReynolds, Lisa J.
    Alter, Blanche P.
    Savage, Sharon A.
    Bonfim, Carmem M. S.
    Wu, Colin O.
    Calado, Rodrigo T.
    Young, Neal S.
    BLOOD, 2021, 138
  • [28] A Machine-Learning-Based Labelling Diversity Model for Predictive Analysis: Using 16QAM as a Case Study
    Solwa, Shaheen
    Elmezughi, Mohamed K.
    Salih, Omran
    Almaktoof, Ali M.
    Kahn, M. T. E.
    IEEE ACCESS, 2022, 10 : 91840 - 91854
  • [29] Data-driven machine-learning-based seismic failure mode identification of reinforced concrete shear walls
    Mangalathu, Sujith
    Jang, Hansol
    Hwang, Seong-Hoon
    Jeon, Jong-Su
    ENGINEERING STRUCTURES, 2020, 208
  • [30] Machine Learning for Identification of High-Risk Clonal Haematopoiesis Using Blood Count Data
    Dunn, William G.
    Withnell, Isabella
    Gu, Muxin
    Quiros, Pedro
    Kovilakam, Sruthi Cheloor
    Marando, Ludovica
    Fabre, Margarete
    Mohorianu, Irina
    Vuckovic, Dragana
    Vassiliou, George
    BLOOD, 2023, 142