Global well-posedness for the 2D MHD equations with only vertical velocity damping term

被引:0
|
作者
Long, Huan [1 ]
Ye, Suhui [1 ]
机构
[1] Chengdu Univ Technol, Sch Math Sci, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
基金
中国国家自然科学基金;
关键词
magnetohydrodynamic equations; global solutions; Diophantine condition; MAGNETIC DIFFUSION; MAGNETOHYDRODYNAMIC SYSTEM; EXISTENCE;
D O I
10.3934/math.20241725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.
引用
收藏
页码:36371 / 36384
页数:14
相关论文
共 50 条
  • [41] Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
    Zhou, Guoli
    Wang, Lidan
    Wu, Jiang-Lun
    STATISTICS & PROBABILITY LETTERS, 2022, 182
  • [42] On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations
    Zineb Hassainia
    Annales Henri Poincaré, 2022, 23 : 2877 - 2917
  • [43] GLOBAL WELL-POSEDNESS OF THE STOCHASTIC 2D BOUSSINESQ EQUATIONS WITH PARTIAL VISCOSITY
    蒲学科
    郭柏灵
    Acta Mathematica Scientia, 2011, 31 (05) : 1968 - 1984
  • [44] Global well-posedness of a model on 2D Boussinesq–Bénard equations
    Li, Chaoying
    Xu, Xiaojing
    Ye, Zhuan
    Zeitschrift fur Angewandte Mathematik und Physik, 2021, 72 (01):
  • [45] Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation
    Ye, Zhuan
    Xu, Xiaojing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6716 - 6744
  • [46] GLOBAL WELL-POSEDNESS OF THE STOCHASTIC 2D BOUSSINESQ EQUATIONS WITH PARTIAL VISCOSITY
    Pu Xueke
    Guo Boling
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1968 - 1984
  • [47] Global well-posedness of a model on 2D Boussinesq-Benard equations
    Li, Chaoying
    Xu, Xiaojing
    Ye, Zhuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [48] ON THE WELL-POSEDNESS OF THE STOCHASTIC 2D PRIMITIVE EQUATIONS
    Sun, Chengfeng
    Su, Lijuan
    Liu, Hui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1273 - 1295
  • [49] On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations
    Hassainia, Zineb
    ANNALES HENRI POINCARE, 2022, 23 (08): : 2877 - 2917
  • [50] Global well-posedness of a model on 2D Boussinesq–Bénard equations
    Chaoying Li
    Xiaojing Xu
    Zhuan Ye
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72