Global well-posedness for the 2D MHD equations with only vertical velocity damping term

被引:0
|
作者
Long, Huan [1 ]
Ye, Suhui [1 ]
机构
[1] Chengdu Univ Technol, Sch Math Sci, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
基金
中国国家自然科学基金;
关键词
magnetohydrodynamic equations; global solutions; Diophantine condition; MAGNETIC DIFFUSION; MAGNETOHYDRODYNAMIC SYSTEM; EXISTENCE;
D O I
10.3934/math.20241725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.
引用
收藏
页码:36371 / 36384
页数:14
相关论文
共 50 条
  • [31] GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION
    晋雪婷
    肖跃龙
    于幻
    Acta Mathematica Scientia, 2022, 42 (04) : 1293 - 1309
  • [32] Global well-posedness for the 2D Boussinesq equations with zero viscosity
    Zhou, Daoguo
    Li, Zilai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (02) : 1072 - 1079
  • [33] Global well-posedness for the 2D Boussinesq system with variable viscosity and damping
    Yu, Yanghai
    Wu, Xing
    Tang, Yanbin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 3044 - 3061
  • [34] WELL-POSEDNESS OF THE 2D EULER EQUATIONS WHEN VELOCITY GROWS AT INFINITY
    Cozzi, Elaine
    Kelliher, James P.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (05) : 2361 - 2392
  • [35] Global well-posedness of strong solution to 2D MHD equations in critical Fourier-Herz spaces
    Min, Dezai
    Wu, Gang
    Yao, Zhuoya
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (01)
  • [36] Global well-posedness for the 2D non-resistive MHD equations in two kinds of periodic domains
    Qionglei Chen
    Xiaoxia Ren
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [37] Global well-posedness for the 2D non-resistive MHD equations in two kinds of periodic domains
    Chen, Qionglei
    Ren, Xiaoxia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [38] On the global well-posedness and striated regularity of the 2D Boussinesq-MHD system
    Niu, Dongjuan
    Peng, Jiao
    Wang, Lu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2572 - 2595
  • [39] Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
    Xing Su
    Gangwei Wang
    Yue Wang
    Advances in Difference Equations, 2019
  • [40] GLOBAL WELL-POSEDNESS OF 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH HORIZONTAL DISSIPATION
    Suo, Xiaoxiao
    Jiu, Quansen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4523 - 4553