Global well-posedness for the 2D MHD equations with only vertical velocity damping term

被引:0
|
作者
Long, Huan [1 ]
Ye, Suhui [1 ]
机构
[1] Chengdu Univ Technol, Sch Math Sci, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
基金
中国国家自然科学基金;
关键词
magnetohydrodynamic equations; global solutions; Diophantine condition; MAGNETIC DIFFUSION; MAGNETOHYDRODYNAMIC SYSTEM; EXISTENCE;
D O I
10.3934/math.20241725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.
引用
收藏
页码:36371 / 36384
页数:14
相关论文
共 50 条
  • [21] Global well-posedness for axisymmetric MHD equations with vertical dissipation and vertical magnetic diffusion
    Wang, Peng
    Guo, Zhengguang
    NONLINEARITY, 2022, 35 (05) : 2147 - 2174
  • [22] The Global Well-posedness of Strong Solutions to 2D MHD Equations in Lei-Lin Space
    Bao-quan YUAN
    Ya-min XIAO
    Acta Mathematicae Applicatae Sinica, 2023, 39 (03) : 647 - 655
  • [23] GLOBAL WELL-POSEDNESS OF THE 2D MHD EQUATIONS OF DAMPED WAVE TYPE IN SOBOLEV SPACE\ast
    Ji, Ruihong
    Wu, Jiahong
    Xu, Xiaojing
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (06) : 6018 - 6053
  • [24] The Global Well-posedness of Strong Solutions to 2D MHD Equations in Lei-Lin Space
    Bao-quan Yuan
    Ya-min Xiao
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 647 - 655
  • [25] Global well-posedness for 2D non-resistive MHD equations in half-space
    Zhang, Zhaoyun
    Zhao, Xiaopeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (05)
  • [26] The Global Well-posedness of Strong Solutions to 2D MHD Equations in Lei-Lin Space
    Yuan, Bao-quan
    Xiao, Ya-min
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (03): : 647 - 655
  • [27] Global well-posedness for the 3-D generalized MHD equations
    Wang, Zhaoyang
    Liu, Hui
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [28] Global well-posedness of 2D incompressible Oldroyd-B model with only velocity dissipation
    Chen, Yuhao
    Zhu, Yi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 376 : 606 - 632
  • [29] Global Well-Posedness of the 2D Boussinesq Equations with Partial Dissipation
    Xueting Jin
    Yuelong Xiao
    Huan Yu
    Acta Mathematica Scientia, 2022, 42 : 1293 - 1309
  • [30] Global Well-Posedness of the 2D Boussinesq Equations with Partial Dissipation
    Jin, Xueting
    Xiao, Yuelong
    Yu, Huan
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1293 - 1309