Global well-posedness for the 2D MHD equations with only vertical velocity damping term

被引:0
|
作者
Long, Huan [1 ]
Ye, Suhui [1 ]
机构
[1] Chengdu Univ Technol, Sch Math Sci, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
基金
中国国家自然科学基金;
关键词
magnetohydrodynamic equations; global solutions; Diophantine condition; MAGNETIC DIFFUSION; MAGNETOHYDRODYNAMIC SYSTEM; EXISTENCE;
D O I
10.3934/math.20241725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.
引用
收藏
页码:36371 / 36384
页数:14
相关论文
共 50 条
  • [1] GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ EQUATIONS WITH A VELOCITY DAMPING TERM
    Wan, Renhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (05) : 2709 - 2730
  • [2] Global Well-Posedness of the 2D Boussinesq Equations with Vertical Dissipation
    Li, Jinkai
    Titi, Edriss S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (03) : 983 - 1001
  • [3] Global Well-Posedness of the 2D Boussinesq Equations with Vertical Dissipation
    Jinkai Li
    Edriss S. Titi
    Archive for Rational Mechanics and Analysis, 2016, 220 : 983 - 1001
  • [4] GLOBAL WELL-POSEDNESS OF STRONG SOLUTIONS TO THE 2D DAMPED BOUSSINESQ AND MHD EQUATIONS WITH LARGE VELOCITY
    Wan, Renhui
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (06) : 1617 - 1626
  • [5] Global well-posedness of 2D generalized MHD equations with fractional diffusion
    Zhiqiang Wei
    Weiyi Zhu
    Journal of Inequalities and Applications, 2013
  • [6] Global well-posedness of 2D generalized MHD equations with fractional diffusion
    Wei, Zhiqiang
    Zhu, Weiyi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [7] Global Well-Posedness for MHD Equations with Magnetic Diffusion and Damping Term in R2
    Feng, Weixun
    Qin, Dongdong
    Zhu, Rui
    Chen, Zhi
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)
  • [8] Global well-posedness of the free-surface incompressible ideal MHD equations with velocity damping
    Liu, Mengmeng
    Jiang, Han
    Zhang, Yajie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (06):
  • [9] Global well-posedness and decay to 3D MHD equations with nonlinear damping
    Li, Hongmin
    Xiao, Yuelong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
  • [10] Global well-posedness for axisymmetric MHD system with only vertical viscosity
    Jiu, Quansen
    Yu, Huan
    Zheng, Xiaoxin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) : 2954 - 2990