Efficient online sensitivity analysis for the injective bottleneck path problem

被引:0
|
作者
Kaymakov, Kirill V. [1 ]
Malyshev, Dmitry S. [2 ]
机构
[1] Coleman Tech LLC, 40 Mira Ave, Moscow 129090, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Algorithms & Technol Networks Anal, 136 Rodionova Str, Nizhnii Novgorod 603093, Russia
关键词
Bottleneck path problem; Sensitivity analysis; Efficient algorithm; INDEPENDENT SET PROBLEM; MINIMUM SPANNING-TREES; SHORTEST-PATH; BOUND ALGORITHMS; MIN-MAX; TOLERANCES; COMPUTATION;
D O I
10.1007/s11590-024-02170-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The tolerance of an element of a combinatorial optimization problem with respect to a given optimal solution is the maximum change, i.e., decrease or increase, of its cost, such that this solution remains optimal. The bottleneck path problem, for given an edge-capacitated graph, a source, and a target, is to find the max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max $$\end{document}-min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document} value of edge capacities on paths between the source and the target. For any given sample of this problem with n vertices and m edges, there is known the Ramaswamy-Orlin-Chakravarty's algorithm to compute an optimal path and all tolerances with respect to it in O(m+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m+n\log n)$$\end{document} time. In this note, for any in advance given (n, m)-network with distinct edge capacities and k source-target pairs, we propose an O(m alpha(m,n)+min((n+k)logn,km))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\Big (m \alpha (m,n)+\min \big ((n+k)\log n,km\big )\Big )$$\end{document}-time preprocessing, where alpha(<middle dot>,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (\cdot ,\cdot )$$\end{document} is the inverse Ackermann function, to find in O(k) time all 2k tolerances of an arbitrary edge with respect to some maxmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \min $$\end{document} paths between the paired sources and targets. To find both tolerances of all edges with respect to those optimal paths, it asymptotically improves, for some n, m, k, the Ramaswamy-Orlin-Chakravarty's complexity O(k(m+nlogn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big (k(m+n\log n)\big )$$\end{document} up to O(m alpha(n,m)+km)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m\alpha (n,m)+km)$$\end{document}.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] EFFICIENT ONLINE PATH PLANNING ALGORITHM AND NAVIGATION FOR A MOBILE ROBOT
    HABIB, MK
    YUTA, S
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1990, 69 (02) : 187 - 210
  • [42] Consumer online trust analysis based on path analysis
    Wang Chuanmei
    Liu Yang
    Zhang Jinlong
    Proceedings of 2005 International Conference on Innovation & Management, 2005, : 859 - 862
  • [44] Critical Path Based Microarchitectural Bottleneck Analysis for Out-of-Order Execution
    Tanimoto, Teruo
    Ono, Takatsugu
    Inoue, Koji
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (06) : 758 - 766
  • [45] A Refined Analysis of Online Path Coloring in Trees
    Chauhan, Astha
    Narayanaswamy, N. S.
    APPROXIMATION AND ONLINE ALGORITHMS (WAOA 2016), 2017, 10138 : 142 - 154
  • [46] Efficient methods for sensitivity analysis
    Clemson, B.
    Tang, Y.
    Pyne, J.
    Unal, R.
    System Dynamics Review, 11 (01):
  • [47] EFFICIENT METHODS FOR SENSITIVITY ANALYSIS
    CLEMSON, B
    SYSTEM DYNAMICS REVIEW, 1995, 11 (01) : 31 - 49
  • [48] Inverse Multi-objective Shortest Path Problem Under the Bottleneck Type Weighted Hamming Distance
    Karimi, Mobarakeh
    Aman, Massoud
    Dolati, Ardeshir
    TOPICS IN THEORETICAL COMPUTER SCIENCE, TTCS 2017, 2017, 10608 : 34 - 40
  • [49] Precise and Efficient Parametric Path Analysis
    Althaus, Ernst
    Altmeyer, Sebastian
    Naujoks, Rouven
    LCTES 11: PROCEEDINGS OF THE ACM SIGPLAN/SIGBED 2011 CONFERENCE ON LANGUAGES, COMPILERS, TOOLS AND THEORY FOR EMBEDDED SYSTEMS, 2011, : 141 - 150
  • [50] Precise and Efficient Parametric Path Analysis
    Althaus, Ernst
    Altmeyer, Sebastian
    Naujoks, Rouven
    ACM SIGPLAN NOTICES, 2011, 46 (05) : 141 - 150