The tolerance of an element of a combinatorial optimization problem with respect to a given optimal solution is the maximum change, i.e., decrease or increase, of its cost, such that this solution remains optimal. The bottleneck path problem, for given an edge-capacitated graph, a source, and a target, is to find the max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max $$\end{document}-min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document} value of edge capacities on paths between the source and the target. For any given sample of this problem with n vertices and m edges, there is known the Ramaswamy-Orlin-Chakravarty's algorithm to compute an optimal path and all tolerances with respect to it in O(m+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m+n\log n)$$\end{document} time. In this note, for any in advance given (n, m)-network with distinct edge capacities and k source-target pairs, we propose an O(m alpha(m,n)+min((n+k)logn,km))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\Big (m \alpha (m,n)+\min \big ((n+k)\log n,km\big )\Big )$$\end{document}-time preprocessing, where alpha(<middle dot>,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (\cdot ,\cdot )$$\end{document} is the inverse Ackermann function, to find in O(k) time all 2k tolerances of an arbitrary edge with respect to some maxmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \min $$\end{document} paths between the paired sources and targets. To find both tolerances of all edges with respect to those optimal paths, it asymptotically improves, for some n, m, k, the Ramaswamy-Orlin-Chakravarty's complexity O(k(m+nlogn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big (k(m+n\log n)\big )$$\end{document} up to O(m alpha(n,m)+km)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m\alpha (n,m)+km)$$\end{document}.