Efficient online sensitivity analysis for the injective bottleneck path problem

被引:0
|
作者
Kaymakov, Kirill V. [1 ]
Malyshev, Dmitry S. [2 ]
机构
[1] Coleman Tech LLC, 40 Mira Ave, Moscow 129090, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Algorithms & Technol Networks Anal, 136 Rodionova Str, Nizhnii Novgorod 603093, Russia
关键词
Bottleneck path problem; Sensitivity analysis; Efficient algorithm; INDEPENDENT SET PROBLEM; MINIMUM SPANNING-TREES; SHORTEST-PATH; BOUND ALGORITHMS; MIN-MAX; TOLERANCES; COMPUTATION;
D O I
10.1007/s11590-024-02170-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The tolerance of an element of a combinatorial optimization problem with respect to a given optimal solution is the maximum change, i.e., decrease or increase, of its cost, such that this solution remains optimal. The bottleneck path problem, for given an edge-capacitated graph, a source, and a target, is to find the max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max $$\end{document}-min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document} value of edge capacities on paths between the source and the target. For any given sample of this problem with n vertices and m edges, there is known the Ramaswamy-Orlin-Chakravarty's algorithm to compute an optimal path and all tolerances with respect to it in O(m+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m+n\log n)$$\end{document} time. In this note, for any in advance given (n, m)-network with distinct edge capacities and k source-target pairs, we propose an O(m alpha(m,n)+min((n+k)logn,km))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\Big (m \alpha (m,n)+\min \big ((n+k)\log n,km\big )\Big )$$\end{document}-time preprocessing, where alpha(<middle dot>,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (\cdot ,\cdot )$$\end{document} is the inverse Ackermann function, to find in O(k) time all 2k tolerances of an arbitrary edge with respect to some maxmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \min $$\end{document} paths between the paired sources and targets. To find both tolerances of all edges with respect to those optimal paths, it asymptotically improves, for some n, m, k, the Ramaswamy-Orlin-Chakravarty's complexity O(k(m+nlogn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big (k(m+n\log n)\big )$$\end{document} up to O(m alpha(n,m)+km)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m\alpha (n,m)+km)$$\end{document}.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] EFFICIENT APPROXIMATIONS FOR THE ONLINE DISPERSION PROBLEM
    Chen, Jing
    Li, Bo
    Li, Yingkai
    SIAM JOURNAL ON COMPUTING, 2019, 48 (02) : 373 - 416
  • [22] Efficient Stochastic Algorithms for the Sensitivity Analysis Problem in the Air Pollution Modelling
    Ostromsky, Tzvetan
    Todorov, Venelin
    Dimov, Ivan
    Zlatev, Zahari
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 420 - 428
  • [23] Experimental analysis of heuristics for the bottleneck traveling salesman problem
    LaRusic, John
    Punnen, Abraham P.
    Aubanel, Eric
    JOURNAL OF HEURISTICS, 2012, 18 (03) : 473 - 503
  • [24] Experimental analysis of heuristics for the bottleneck traveling salesman problem
    John LaRusic
    Abraham P. Punnen
    Eric Aubanel
    Journal of Heuristics, 2012, 18 : 473 - 503
  • [25] BOTTLENECK TRAVELING SALESMAN PROBLEM - ALGORITHMS AND PROBABILISTIC ANALYSIS
    GARFINKEL, RS
    GILBERT, KC
    JOURNAL OF THE ACM, 1978, 25 (03) : 435 - 448
  • [26] Online algorithms for the MaxMin graph balancing problem on the path
    Guan L.
    Liu X.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (02): : 28 - 31and61
  • [27] An Efficient Algorithm for the Least Areas Path Problem
    Fan, Gaojun
    Jin, Shiyao
    2008 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL 1, PROCEEDINGS, 2008, : 369 - 373
  • [28] An efficient algorithm for the Steiner Tree Problem with revenue, bottleneck and hop objective functions
    Pinto, Leizer Lima
    Laporte, Gilbert
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (01) : 45 - 49
  • [29] An efficient distributed protocol for online gossiping problem
    Shi, ZN
    Srimani, PK
    2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Proceedings, 2005, : 599 - 602
  • [30] A Note on Detecting Unbounded Instances of the Online Shortest Path Problem
    Boyles, Stephen D.
    Rambha, Tarun
    NETWORKS, 2016, 67 (04) : 270 - 276