Efficient online sensitivity analysis for the injective bottleneck path problem

被引:0
|
作者
Kaymakov, Kirill V. [1 ]
Malyshev, Dmitry S. [2 ]
机构
[1] Coleman Tech LLC, 40 Mira Ave, Moscow 129090, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Algorithms & Technol Networks Anal, 136 Rodionova Str, Nizhnii Novgorod 603093, Russia
关键词
Bottleneck path problem; Sensitivity analysis; Efficient algorithm; INDEPENDENT SET PROBLEM; MINIMUM SPANNING-TREES; SHORTEST-PATH; BOUND ALGORITHMS; MIN-MAX; TOLERANCES; COMPUTATION;
D O I
10.1007/s11590-024-02170-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The tolerance of an element of a combinatorial optimization problem with respect to a given optimal solution is the maximum change, i.e., decrease or increase, of its cost, such that this solution remains optimal. The bottleneck path problem, for given an edge-capacitated graph, a source, and a target, is to find the max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max $$\end{document}-min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document} value of edge capacities on paths between the source and the target. For any given sample of this problem with n vertices and m edges, there is known the Ramaswamy-Orlin-Chakravarty's algorithm to compute an optimal path and all tolerances with respect to it in O(m+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m+n\log n)$$\end{document} time. In this note, for any in advance given (n, m)-network with distinct edge capacities and k source-target pairs, we propose an O(m alpha(m,n)+min((n+k)logn,km))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\Big (m \alpha (m,n)+\min \big ((n+k)\log n,km\big )\Big )$$\end{document}-time preprocessing, where alpha(<middle dot>,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (\cdot ,\cdot )$$\end{document} is the inverse Ackermann function, to find in O(k) time all 2k tolerances of an arbitrary edge with respect to some maxmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \min $$\end{document} paths between the paired sources and targets. To find both tolerances of all edges with respect to those optimal paths, it asymptotically improves, for some n, m, k, the Ramaswamy-Orlin-Chakravarty's complexity O(k(m+nlogn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big (k(m+n\log n)\big )$$\end{document} up to O(m alpha(n,m)+km)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m\alpha (n,m)+km)$$\end{document}.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On the online shortest path problem with limited arc cost dependencies
    Waller, ST
    Ziliaskopoulos, AK
    NETWORKS, 2002, 40 (04) : 216 - 227
  • [32] An efficient parallel algorithm for the longest path problem in meshes
    Keshavarz-Kohjerdi, Fatemeh
    Bagheri, Alireza
    JOURNAL OF SUPERCOMPUTING, 2013, 65 (02): : 723 - 741
  • [33] A FAMILY OF EFFICIENT REGULAT ARRAYS FOR ALGEBRAIC PATH PROBLEM
    CHANG, PY
    TSAY, JC
    IEEE TRANSACTIONS ON COMPUTERS, 1994, 43 (07) : 769 - 777
  • [34] An Efficient Algorithm for the Shortest Path Problem with Forbidden Paths
    Hsu, Chiun-Chieh
    Chen, Da-Ren
    Ding, Hua-Yuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PROCEEDINGS, 2009, 5574 : 638 - +
  • [35] EFFICIENT ALGORITHMS FOR SOLVING THE SHORTEST COVERING PATH PROBLEM
    CURRENT, J
    PIRKUL, H
    ROLLAND, E
    TRANSPORTATION SCIENCE, 1994, 28 (04) : 317 - 327
  • [36] An efficient dynamic model for solving the shortest path problem
    Nazemi, Alireza
    Omidi, Farahnaz
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2013, 26 : 1 - 19
  • [37] An efficient algorithm for linear fractional shortest path problem
    Roan, J
    PROCEEDINGS OF THE TWENTY-SEVENTH ANNUAL MEETING OF THE WESTERN DECISION SCIENCES INSTITUTE, 1998, : 639 - 643
  • [38] An efficient approximation for weighted region shortest path problem
    Reif, J
    Sun, Z
    ALGORITHMIC AND COMPUTATIONAL ROBOTICS: NEW DIRECTIONS, 2001, : 191 - 203
  • [39] An efficient parallel algorithm for the longest path problem in meshes
    Fatemeh Keshavarz-Kohjerdi
    Alireza Bagheri
    The Journal of Supercomputing, 2013, 65 : 723 - 741
  • [40] Efficient Approximations for Thinnest Path Problem in Grid Graph
    Wu, Shuang
    Chen, Zhiyin
    Wang, Yang
    Gao, Xiaofeng
    Wu, Fan
    Chen, Guihai
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2018), 2018,