PyGpPHs: A Python']Python Package for Bayesian Modeling of Port-Hamiltonian Systems

被引:0
|
作者
Li, Peilun [1 ]
Tan, Kaiyuan [1 ]
Beckers, Thomas [1 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
port-Hamiltonian systems; physics-informed learning; Gaussian processes; EQUATION;
D O I
10.1016/j.ifacol.2024.08.256
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PyGpPHs is a Python toolbox for physics-informed learning of physical systems. Compared to pure data-driven approaches, it relies on solid physics priors based on the Gaussian process port-Hamiltonian systems (GP-PHS) framework. This foundation guarantees that the learning procedure adheres to the fundamental physical laws governing real-world systems. Utilizing the Bayesian learning method, PyGpPHs enables physics-informed predictions with uncertainty quantification, which are based on the posterior distribution over Hamiltonians. The PyGpPHs toolbox is designed to make Bayesian learning with physics prior accessible to the learning and control community. PyGpPHs can be installed through an open-source link(1). Copyright (C) 2024 The Authors.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 50 条
  • [1] Simulation and control of interactions in multi-physics, a Python']Python package for port-Hamiltonian systems
    Ferraro, Giuseppe
    Fournie, Michel
    Haine, Ghislain
    IFAC PAPERSONLINE, 2024, 58 (06): : 119 - 124
  • [2] pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Eismann, Michael T.
    LONG-RANGE IMAGING II, 2017, 10204
  • [3] Validating pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Plummer, Philip J.
    Howard, Matthew D.
    Rucci, Michael A.
    LONG-RANGE IMAGING III, 2018, 10650
  • [4] CausalBO: A Python']Python Package for Causal Bayesian Optimization
    Roberts, Jeremy
    Javidian, Mohammad Ali
    SOUTHEASTCON 2024, 2024, : 1370 - 1375
  • [5] PyBNesian: An extensible python']python package for Bayesian networks
    Atienza, David
    Bielza, Concha
    Larranaga, Pedro
    NEUROCOMPUTING, 2022, 504 : 204 - 209
  • [6] Bayesian Modeling and Computation in Python']Python
    Huang, Shuai
    JOURNAL OF QUALITY TECHNOLOGY, 2023, 55 (02) : 266 - 266
  • [7] BARMPy: Bayesian additive regression models Python']Python package
    Van Boxel, Danielle
    COMPUTATIONAL STATISTICS, 2024,
  • [8] On port-Hamiltonian modeling and control of quaternion systems
    Fujimoto, Kenji
    Takeuchi, Tomoya
    Matsumoto, Yuki
    IFAC PAPERSONLINE, 2015, 48 (13): : 39 - 44
  • [9] BSTPP: a python']python package for Bayesian spatiotemporal point processes
    Manring, Isaac
    Wang, Honglang
    Mohler, George
    Miscouridou, Xenia
    JOURNAL OF APPLIED STATISTICS, 2025,
  • [10] Bayesian Modeling and Computation in Python']Python Learning
    Lazic, Stanley E.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 : S764 - S765