Brill-Noether loci

被引:0
|
作者
Teixidor i Bigas, Montserrat [1 ]
机构
[1] Tufts Univ, Math Dept, 177 Coll Ave, Medford, MA 02155 USA
关键词
LIMIT LINEAR SERIES; KODAIRA DIMENSION; MODULI SPACE; DIVISORS; BUNDLES; CURVES;
D O I
10.1007/s00229-025-01616-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Brill-Noether loci Mg,dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}<^>r_{g,d}$$\end{document} are those subsets of the moduli space Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_g$$\end{document} determined by the existence of a linear series of degree d and dimension r. By looking at non-singular curves in a neighborhood of a special chain of elliptic curves, we provide a new proof of the non-emptiness of the Brill-Noether loci when the expected codimension satisfies -g+r+1 <=rho(g,r,d)<= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-g+r+1\le \rho (g,r,d)\le 0$$\end{document} and prove that for a generic point of a component of this locus, the Petri map is onto. As an application, we show that Brill-Noether loci of the same codimension are distinct when the codimension is not too large, substantially generalizing the known result in codimensions 1 and 2. We also provide a new technique for checking that Brill-Noether loci are not included in each other.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] NONEMPTINESS OF BRILL-NOETHER LOCI IN M (2, K)
    Lange, Herbert
    Newstead, Peter E.
    Park, Seong Suk
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 746 - 767
  • [22] New examples of twisted Brill-Noether loci I
    Brambila-Paz, L.
    Newstead, P. E.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (09)
  • [23] BRILL-NOETHER LOCI WITH FIXED DETERMINANT IN RANK 2
    Osserman, Brian
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (13)
  • [24] Singularities of Brill-Noether loci for vector bundles on a curve
    Casalaina-Martin, Sebastian
    Teixidor i Bigas, Montserrat
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) : 1846 - 1871
  • [25] ON THE BRILL-NOETHER THEOREM
    EISENBUD, D
    HARRIS, J
    LECTURE NOTES IN MATHEMATICS, 1983, 997 : 131 - 137
  • [26] Motivic classes of degeneracy loci and pointed Brill-Noether varieties
    Anderson, Dave
    Chen, Linda
    Tarasca, Nicola
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (03): : 1787 - 1822
  • [27] EXPECTED DIMENSIONS OF HIGHER-RANK BRILL-NOETHER LOCI
    Zhang, Naizhen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (09) : 3735 - 3746
  • [28] Martens and Mumford theorems for higher rank Brill-Noether loci
    Nazarlou, Parviz Asefi
    Bajravani, Ali
    Hitching, George H.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [29] K-classes of Brill-Noether Loci and a Determinantal Formula
    Anderson, Dave
    Chen, Linda
    Tarasca, Nicola
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (16) : 12653 - 12698
  • [30] Some examples of rank-2 Brill-Noether loci
    Newstead, P. E.
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01): : 201 - 215