Brill-Noether loci

被引:0
|
作者
Teixidor i Bigas, Montserrat [1 ]
机构
[1] Tufts Univ, Math Dept, 177 Coll Ave, Medford, MA 02155 USA
关键词
LIMIT LINEAR SERIES; KODAIRA DIMENSION; MODULI SPACE; DIVISORS; BUNDLES; CURVES;
D O I
10.1007/s00229-025-01616-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Brill-Noether loci Mg,dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}<^>r_{g,d}$$\end{document} are those subsets of the moduli space Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_g$$\end{document} determined by the existence of a linear series of degree d and dimension r. By looking at non-singular curves in a neighborhood of a special chain of elliptic curves, we provide a new proof of the non-emptiness of the Brill-Noether loci when the expected codimension satisfies -g+r+1 <=rho(g,r,d)<= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-g+r+1\le \rho (g,r,d)\le 0$$\end{document} and prove that for a generic point of a component of this locus, the Petri map is onto. As an application, we show that Brill-Noether loci of the same codimension are distinct when the codimension is not too large, substantially generalizing the known result in codimensions 1 and 2. We also provide a new technique for checking that Brill-Noether loci are not included in each other.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Vector bundles on Fano threefolds of genus 7 and Brill-Noether loci
    Brambilla, Maria Chiara
    Faenzi, Daniele
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (03)
  • [42] Brill-Noether loci on moduli spaces of symplectic bundles over curves
    Bajravani, Ali
    Hitching, George H.
    COLLECTANEA MATHEMATICA, 2021, 72 (02) : 443 - 469
  • [43] Algebraic and combinatorial Brill-Noether theory
    Caporaso, Lucia
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 69 - 85
  • [44] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776
  • [45] BRILL-NOETHER ALGORITHM AND GOPPA CODES
    LEBRIGAND, D
    RISLER, JJ
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (02): : 231 - 253
  • [46] Brill-Noether theory on Hirzebruch surfaces
    Costa, L.
    Miro-Roig, R. M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (09) : 1612 - 1622
  • [47] Brill-Noether loci and generated torsionfree sheaves over nodal and cuspidal curves
    Bhosle, Usha N.
    Singh, Sanjay Kumar
    MANUSCRIPTA MATHEMATICA, 2013, 141 (1-2) : 241 - 271
  • [48] Brill-Noether problems in higher dimensions
    Nakashima, Tohru
    FORUM MATHEMATICUM, 2008, 20 (01) : 145 - 161
  • [49] On the Brill-Noether problem for vector bundles
    Daskalopoulos, GD
    Wentworth, RA
    FORUM MATHEMATICUM, 1999, 11 (01) : 63 - 77
  • [50] Weak Brill-Noether for rational surfaces
    Coskun, Izzet
    Huizenga, Jack
    LOCAL AND GLOBAL METHODS IN ALGEBRAIC GEOMETRY, 2018, 712 : 81 - 104