K-classes of Brill-Noether Loci and a Determinantal Formula

被引:8
|
作者
Anderson, Dave [1 ]
Chen, Linda [2 ]
Tarasca, Nicola [3 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
[3] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
基金
美国国家科学基金会;
关键词
DEGENERACY LOCI; GROBNER GEOMETRY; CURVES; POLYNOMIALS; PROOF;
D O I
10.1093/imrn/rnab025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Euler characteristic of the structure sheaf of the Brill-Noether locus of linear series with special vanishing at up to two marked points. When the Brill-Noether number rho is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when rho = 1, we recover the formulas of Eisenbud-Harris, Pirola, and Chan-Martin-Pflueger-Teixidor for the arithmetic genus of a Brill-Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the K-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey-Jockusch-Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux.
引用
收藏
页码:12653 / 12698
页数:46
相关论文
共 50 条
  • [1] Brill-Noether loci
    Teixidor i Bigas, Montserrat
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [2] Motivic classes of degeneracy loci and pointed Brill-Noether varieties
    Anderson, Dave
    Chen, Linda
    Tarasca, Nicola
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (03): : 1787 - 1822
  • [3] Nonemptiness of Brill-Noether loci
    Brambila-Paz, L
    Mercat, V
    Newstead, PE
    Ongay, F
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (06) : 737 - 760
  • [4] NONEMPTINESS OF BRILL-NOETHER LOCI IN M (2, K)
    Lange, Herbert
    Newstead, Peter E.
    Park, Seong Suk
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 746 - 767
  • [5] Brill-Noether loci in codimension two
    Tarasca, Nicola
    COMPOSITIO MATHEMATICA, 2013, 149 (09) : 1535 - 1568
  • [6] Brill-Noether loci with ramification at two points
    Teixidor-I-Bigas, Montserrat
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (03) : 1217 - 1232
  • [7] Connectedness of Brill-Noether Loci via Degenerations
    Osserman, Brian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (19) : 6162 - 6178
  • [8] Nonemptiness and smoothness of twisted Brill-Noether loci
    Hitching, George H.
    Hoff, Michael
    Newstead, Peter E.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 685 - 709
  • [9] ON THE CLASS OF BRILL-NOETHER LOCI FOR PRYM VARIETIES
    DECONCINI, C
    PRAGACZ, P
    MATHEMATISCHE ANNALEN, 1995, 302 (04) : 687 - 697
  • [10] The osculating cone to special Brill-Noether loci
    Hoff, Michael
    Mayer, Ulrike
    COLLECTANEA MATHEMATICA, 2015, 66 (03) : 387 - 403